【題目】(本小題12分)

A、B是治療同一種疾病的兩種藥,用若干試驗組進(jìn)行對比試驗。每個試驗組由4只小白鼠組成,其中2只服用A,另2只服用B,然后觀察療效。若在一個試驗組中,服用A有效的小白鼠只數(shù)比服用B有效的多,就稱該試驗組為甲類組。設(shè)每只小白鼠服用A有效的概率為,服用B有效的概率為。

()求一個試驗組為甲類組的概率;

() 觀察3個試驗組,用表示這3個試驗組中甲類組的個數(shù),求的分布列和數(shù)學(xué)期望。

【答案】(1)設(shè)Ai表示事件一個試驗組中,服用A有效的小鼠有i" , i=0,1,2,

Bi表示事件一個試驗組中,服用B有效的小鼠有i" , i=0,1,2, ……2分

依題意有: P(A1)=2×× = , P(A2)= × = .

P(B0)= × = , P(B1)=2× × = , ……………………4分

所求概率為: P=P(B0·A1)+P(B0·A2)+P(B1·A2)

= × + × + × = ………………………………6分

()ξ的可能值為0,1,2,3ξ~B(3,) .

P(ξ=0)=()3= , P(ξ=1)=C31××()2=,

P(ξ=2)=C32×()2× = , P(ξ=3)=( )3= …………………10分

ξ的分布列為:

ξ

0

1

2

3

P

數(shù)學(xué)期望: Eξ=3× = .………………………………………12分

【解析】

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年底,武漢發(fā)生新型冠狀病毒肺炎疫情,國家衛(wèi)健委緊急部署,從多省調(diào)派醫(yī)務(wù)工作者前去支援,正值農(nóng)歷春節(jié)舉家團(tuán)圓之際,他們成為最美逆行者.武漢市從27日起舉全市之力入戶上門排查確診的新冠肺炎患者疑似的新冠肺炎患者無法明確排除新冠肺炎的發(fā)熱患者和確診患者的密切接觸者等四類人員,強(qiáng)化網(wǎng)格化管理,不落一戶不漏一人.若在排查期間,某小區(qū)有5人被確認(rèn)為確診患者的密切接觸者,現(xiàn)醫(yī)護(hù)人員要對這5人隨機(jī)進(jìn)行逐一核糖核酸檢測,只要出現(xiàn)一例陽性,則將該小區(qū)確定為感染高危小區(qū).假設(shè)每人被確診的概率均為且相互獨立,若當(dāng)時,至少檢測了4人該小區(qū)被確定為感染高危小區(qū)的概率取得最大值,則____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市場研究人員為了了解產(chǎn)業(yè)園引進(jìn)的甲公司前期的經(jīng)營狀況,對該公司2019年連續(xù)六個月的利潤進(jìn)行了統(tǒng)計,并根據(jù)得到的數(shù)據(jù)繪制了相應(yīng)的折線圖,如圖所示:

1)由折線圖可以看出,可用線性回歸模型擬合月利潤(單位:百萬元)與月份代碼之間的關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測該公司20204月份的利潤;

2)甲公司新研制了一款產(chǎn)品,需要采購一批新型材料,現(xiàn)有A,B兩種型號的新型材料可供選擇,按規(guī)定每種新型材料最多可使用4個月,但新材料的不穩(wěn)定性會導(dǎo)致材料的使用壽命不同,現(xiàn)對A,B兩種型號的新型材料對應(yīng)的產(chǎn)品各100件進(jìn)行科學(xué)模擬測試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計如下表:

經(jīng)甲公司測算平均每件新型材料每月可以帶來6萬元收人入,不考慮除采購成本之外的其他成本,A型號材料每件的采購成本為10萬元,B型號材料每件的采購成本為12萬元.假設(shè)每件新型材料的使用壽命都是整月數(shù),且以頻率作為每件新型材料使用壽命的概率,如果你是甲公司的負(fù)責(zé)人,以每件新型材料產(chǎn)生利潤的平均值為決策依據(jù),你會選擇采購哪款新型材料?

參考數(shù)據(jù):,.

參考公式:回歸直線方程,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為弘揚(yáng)新時代的中國女排精神.甲、乙兩個女排校隊舉行一場友誼比賽,采用五局三勝制(即某隊先贏三局則獲勝,比賽隨即結(jié)束).若兩隊的競技水平和比賽狀態(tài)相當(dāng),且每局比賽相互獨立,則比賽結(jié)束時已經(jīng)進(jìn)行的比賽局?jǐn)?shù)的數(shù)學(xué)期望是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函

1)當(dāng)的最小正周期為時,求的值;

2)當(dāng)時,設(shè)的內(nèi)角ABC對應(yīng)的邊分別為a、b、c,已知,且,,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的底面為邊長為2的菱形,平面,,為棱上一點,且.

1)求證:;

2)求二面角的余弦值;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐PABCD中,△PAB是邊長為2的等邊三角形,底面ABCD為直角梯形,ABCDABBC,BCCD1,PD.

1)證明:ABPD.

2)求二面角APBC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】廠家在產(chǎn)品出廠前,需對產(chǎn)品做檢驗,第一次檢測廠家的每件產(chǎn)品合格的概率為,如果合格,則可以出廠;如果不合格,則進(jìn)行技術(shù)處理,處理后進(jìn)行第二次檢測.每件產(chǎn)品的合格率為,如果合格,則可以出廠,不合格則當(dāng)廢品回收.

求某件產(chǎn)品能出廠的概率;

若該產(chǎn)品的生產(chǎn)成本為/件,出廠價格為/件,每次檢測費為/件,技術(shù)處理每次/件,回收獲利/.假如每件產(chǎn)品是否合格相互獨立,記為任意一件產(chǎn)品所獲得的利潤,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】桂林漓江主要景點有象鼻山、伏波山、疊彩山、蘆笛巖、七星巖、九馬畫山,小張一家人隨機(jī)從這6個景點中選取2個進(jìn)行游玩,則小張一家人不去七星巖和疊彩山的概率為( .

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案