【題目】以下四個命題中正確的是( )
A.空間的任何一個向量都可用其他三個向量表示
B.若為空間向量的一組基底,則構成空間向量的另一組基底
C.為直角三角形的充要條件是
D.任何三個不共線的向量都可構成空間向量的一個基底
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線(為參數(shù)),.以原點為極點,軸的非負半軸為極軸建立極坐標系.
(I)寫出曲線與圓的極坐標方程;
(II)在極坐標系中,已知射線分別與曲線及圓相交于,當時,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(1)若函數(shù)僅在處取得極值,求實數(shù)的取值范圍;
(2)若函數(shù)有三個極值點,,,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,一個正四棱柱形的密閉容器底部鑲嵌了同底的正四棱錐形實心裝飾塊,容器內盛有升水時,水面恰好經過正四棱錐的頂點P.如果將容器倒置,水面也恰好過點(圖2).有下列四個命題:
A.正四棱錐的高等于正四棱柱高的一半 |
B.將容器側面水平放置時,水面也恰好過點 |
C.任意擺放該容器,當水面靜止時,水面都恰好經過點 |
D.若往容器內再注入升水,則容器恰好能裝滿 |
其中真命題的代號是: (寫出所有真命題的代號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:的焦點為,為拋物線上一點,為坐標原點,的外接圓與拋物線的準線相切,且外接圓的周長為.
(1)求拋物線的方程;
(2)已知點,設不垂直于軸的直線與拋物線交于不同的兩點,,若,證明直線過定點并寫出定點坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面定義一個同學數(shù)學成績優(yōu)秀的標志為:“連續(xù)次考試成績均不低于分”.現(xiàn)有甲、乙、丙三位同學連續(xù)次數(shù)學考試成績的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):
①甲同學:個數(shù)據(jù)的中位數(shù)為,眾數(shù)為;
②乙同學:個數(shù)據(jù)的中位數(shù)為,總體均值為;
③丙同學:個數(shù)據(jù)的中位數(shù)為,總體均值為,總體方差為;
則可以判定數(shù)學成績優(yōu)秀同學為()
A. 甲、丙B. 乙、丙C. 甲、乙D. 甲、乙、丙
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某公司舉行的一次真假游戲的有獎競猜中,設置了“科技”和“生活”這兩類試題,規(guī)定每位職工最多競猜3次,每次競猜的結果相互獨立.猜中一道“科技”類試題得4分,猜中一道“生活”類試題得2分,兩類試題猜不中的都得0分.將職工得分逐次累加并用X表示,如果X的值不低于4分就認為通過游戲的競猜,立即停止競猜,否則繼續(xù)競猜,直到競猜完3次為止.競猜的方案有以下兩種:方案1:先猜一道“科技”類試題,然后再連猜兩道“生活”類試題;
方案2:連猜三道“生活”類試題.
設職工甲猜中一道“科技”類試題的概率為0.5,猜中一道“生活”類試題的概率為0.6.
(1)你認為職工甲選擇哪種方案通過競猜的可能性大?并說明理由.
(2)職工甲選擇哪一種方案所得平均分高?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com