【題目】祖暅原理也就是“等積原理”,它是由我國(guó)南北朝杰出的數(shù)學(xué)家祖沖之的兒子祖暅?zhǔn)紫忍岢鰜?lái)的.祖暅原理的內(nèi)容是:“冪勢(shì)既同,則積不容異”,“勢(shì)”即是高,“冪”是面積.意思是,如果夾在兩平行平面間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的平面所截,如果兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等.已知,兩個(gè)平行平面間有三個(gè)幾何體,分別是三棱錐、四棱錐、圓錐(高度都是h),其中:三棱錐的體積為V,四棱錐的底面是邊長(zhǎng)為a的正方形,圓錐的底面半徑為r,現(xiàn)用平行于這兩個(gè)平面的平面去截三個(gè)幾何體,如果得到的三個(gè)截面面積總相等,那么,下面關(guān)系式正確的是( )
A.,,B.,,
C.,,D.,,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:()的左、右焦點(diǎn)分別為,.橢圓C的長(zhǎng)軸與焦距之比為,過(guò)的直線l與C交于A、B兩點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)l的斜率為1時(shí),求的面積;
(3)當(dāng)線段的垂直平分線在y軸上的截距最小時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:在軸上的一個(gè)焦點(diǎn),與短軸兩個(gè)端點(diǎn)的連線互相垂直,且右焦點(diǎn)坐標(biāo)為.
(1)求橢圓的方程;
(2)設(shè)直線與圓相切,和橢圓交于,兩點(diǎn),為原點(diǎn),線段,分別和圓交于,兩點(diǎn),設(shè),的面積分別為,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是邊長(zhǎng)為2的菱形,,平面,點(diǎn)是棱的中點(diǎn).
(1)證明:平面;
(2)當(dāng)時(shí),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若動(dòng)點(diǎn)為橢圓外一點(diǎn),且點(diǎn)到橢圓的兩條切線相互垂直,求點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】A4紙是生活中最常用的紙規(guī)格.A系列的紙張規(guī)格特色在于:①A0、A1、A2…、A5,所有尺寸的紙張長(zhǎng)寬比都相同.②在A系列紙中,前一個(gè)序號(hào)的紙張以兩條長(zhǎng)邊中點(diǎn)連線為折線對(duì)折裁剪分開后,可以得到兩張后面序號(hào)大小的紙,比如1張A0紙對(duì)裁后可以得到2張A1紙,1張A1紙對(duì)裁可以得到2張A2紙,依此類推.這是因?yàn)?/span>A系列紙張的長(zhǎng)寬比為:1這一特殊比例,所以具備這種特性.已知A0紙規(guī)格為84.1厘米×118.9厘米.118.9÷84.1≈1.41≈,那么A4紙的長(zhǎng)度為( 。
A.厘米B.厘米C.厘米D.厘米
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某超市,隨機(jī)調(diào)查了100名顧客購(gòu)物時(shí)使用手機(jī)支付的情況,得到如下的列聯(lián)表,已知從其中使用手機(jī)支付的人群中隨機(jī)抽取1人,抽到青年的概率為.
青年 | 中老年 | 合計(jì) | |
使用手機(jī)支付 | 60 | ||
不使用手機(jī)支付 | 28 | ||
合計(jì) | 100 |
(1)根據(jù)已知條件完成列聯(lián)表,并根據(jù)此資料判斷是否有99.9%的把握認(rèn)為“超市購(gòu)物用手機(jī)支付與年齡有關(guān)”.
(2)現(xiàn)按照“使用手機(jī)支付”和“不使用手機(jī)支付”進(jìn)行分層抽樣,從這100名顧客中抽取容量為5的樣本,求“從樣本中任選3人,則3人中至少2人使用手機(jī)支付”的概率.
(其中 )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)A,B,C,D為平面內(nèi)的四點(diǎn),且A(1,3),B(2,–2),C(4,1).
(1)若,求D點(diǎn)的坐標(biāo);
(2)設(shè)向量,,若k–與+3平行,求實(shí)數(shù) 的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com