如圖,正三棱柱的底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為,點(diǎn)在棱上.
(1)若,求證:直線平面;
(2)若,二面角平面角的大小為,求的值。  
(1)略(2)
證:(1)連接點(diǎn),                 ……(1分)
在平行四邊形中,
,又                                          ……(3分)
的中位線,從而,                         
平面∴直線平面;                          ……(5分)

(2)過,則平面,過,連接,
為二面角平面角,                               ……(7分)
,則,
則可得,
,則                               
,                                     ……(10分)
.                                        ……(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖ABCD—A1B1C1D1是正四棱柱,側(cè)棱長(zhǎng)為1,底面邊長(zhǎng)為2,E是棱BC的中點(diǎn).
(1)求三棱錐D1—DBC的體積;
(2)證明BD1∥平面C1DE;
(3)求面C1DE與面CDE所成二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

長(zhǎng)方體ABCD—A1B1C1D1(如右圖所示),寬、長(zhǎng)、高分別為3、4、5,現(xiàn)有一甲殼蟲從A出發(fā)沿長(zhǎng)方體表面爬行到C1來獲取食物,試畫出它的最短爬行路線,并求其路程的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下面幾何體的軸截面一定是圓面的是(   )
A.圓柱B.圓錐C.球D.圓臺(tái)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知A,B,C三點(diǎn)在球心為O,半徑為R的球面上,AC⊥BC,且AB=R,那么A,B兩點(diǎn)的球面距離為____________,球心到平面ABC的距離為______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若一直線a上有兩點(diǎn)到一平面α內(nèi)某一直線b的距離相等,則直線與平面的位置關(guān)系是(  )
A.平行B.相交
C.在平面內(nèi)D.以上均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在四面體ABCD中,CB=CD,AD⊥BD,且E,F(xiàn)分別是AB,BD的中點(diǎn),求證:
(1)直線EF∥平面ACD;
(2)平面EFC⊥平面BCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題


軸截面是直角三角形的圓錐的底面半徑為r,則其軸截面面積為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,為正方形所在平面外一點(diǎn)平面,且分別是線段的中點(diǎn)。w.                            (I)求證:平面;

(II)求證:平面平面
(III)求異面直線所成角的大小。

查看答案和解析>>

同步練習(xí)冊(cè)答案