關(guān)于x的方程x2-mx+m+1=0(k∈R)的兩實根為sinθ和cosθ,θ∈(0,2π),sinθ+cosθ求:
(1)m的值;
(2)
sinθ
1+
1
tanθ
+
cosθ
1+tanθ
的值;
(3)方程的兩實根及此時θ的值.
考點:三角函數(shù)的恒等變換及化簡求值,根與系數(shù)的關(guān)系
專題:三角函數(shù)的求值
分析:(1)利用韋達定理可求得m2-2m-3=0,解得m=-1或m=3(舍去),從而可得m的值;
(2)由(1)知m=-1,將所求的關(guān)系式化簡為
1
m
,將m=-1代入即可求得答案;
(3)由m=-1,知sinθ+cosθ=-1,sinθ•cosθ=-1+1=0,而θ∈(0,2π),從而可得方程的兩實根及此時θ的值.
解答: 解:(1)∵為sinθ和cosθ為方程x2-mx+m+1=0(k∈R)的兩實根,
∴sinθ+cosθ=m,sinθ•cosθ=m+1,
∵(sinθ+cosθ)2=sin2θ+2sinθcosθ+cos2θ=1+2sinθcosθ,
∴m2=1+2(m+1),即m2-2m-3=0,
解得:m=-1或m=3(舍去),
∴m=-1.
(2)由(1)知m=-1,
∴原式=
sinθ
1+
cosθ
sinθ
+
cosθ
1+
sinθ
cosθ
=
sin2θ+cos2θ
sinθ+cosθ
=
1
sinθ+cosθ
=
1
m
=-1;
(3)∵sinθ+cosθ=-1,sinθ•cosθ=-1+1=0,
∴sinθ=0,cosθ=-1或cosθ=0,sinθ=-1,
又θ∈(0,2π),
∴θ=π或θ=
2
點評:本題考查三角函數(shù)的恒等變換及化簡求值,考查根與系數(shù)的關(guān)系,著重考查韋達定理的應(yīng)用與正弦函數(shù)與余弦函數(shù)的性質(zhì),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是( 。
A、任何事件的概率總是在(0,1)之間
B、頻率是客觀存在的,與試驗次數(shù)無關(guān)
C、隨著試驗次數(shù)的增加,頻率一般會越來越接近概率
D、概率是隨機的,在試驗前不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若當(dāng)P(m,n)為圓x2+(y-1)2=1上任意一點時,等式m+n+c=0恒成立,則c的取值范圍是(  )
A、-1-
2
≤c≤
2
-1
B、
2
-1≤c≤
2
+1
C、c≤-
2
-1
D、c≥
2
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

商場銷售的某種飲品每件售價36元,成本為20元.對該飲品進行促銷;顧客每購買一件,當(dāng)即連續(xù)轉(zhuǎn)動三次如圖所示轉(zhuǎn)盤,每次停止后指針指向一個數(shù)字,若三次指向同一個數(shù)字,獲一等獎;若三次指向的數(shù)字是連號(不考慮順序),獲二等獎;其它情況無獎.
(1)求一顧客一次購買兩件該飲品,至少有一件獲得獎勵的概率;
(2)若獎勵為返還現(xiàn)金,一等獎獎金數(shù)是二等獎的2倍,統(tǒng)計標明:每天的銷量y(件)與一等獎的獎金額x(元)的關(guān)系式為y≈
x
4
+24.問x設(shè)定為多少最佳?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某汽車廠有一條價值為a萬元的汽車生產(chǎn)線,現(xiàn)要通過技術(shù)改造來提高該生產(chǎn)線的生產(chǎn)能力,提高產(chǎn)品的增加值.經(jīng)過市場調(diào)查,產(chǎn)品的增加值y萬元與技術(shù)改造投入的x萬元之間滿足:①y與(a-x)和x2的乘積成正比;②x∈(0,
2am
2m+1
],其中m是常數(shù).若x=
a
2
時,y=a3
(1)求產(chǎn)品增加值y關(guān)于x的表達式;
(2)求產(chǎn)品增加值y的最大值及相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

吉安一中新校區(qū)正在如火如荼地建設(shè)中,如圖,某工地的平面圖呈圓心角為120°的扇形AOB,工地的兩個出入口設(shè)置在點A及點C處,工地中有兩條筆直的小路AD、DC,長度分別為300米、500米,且DC平行于OB.求該扇形的半徑OA的長(精確到1米).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三角形ABC中,角A、B、C所對邊分別為a,b,c,且
2
sinB=
3cosB

(1)若cosA=
1
3
,求sinC的值;
(2)若b=
7
,sinA=3sinC,求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(
1
2x-1
+
1
2

(1)判定并證明函數(shù)的奇偶性;
(2)試證明f(x)>0在定義域內(nèi)恒成立;
(3)當(dāng)x∈[1,3]時,2f(x)-(
1
2
m•x<0恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有0,1,2,3,4,5六個數(shù)字.
(1)用所給數(shù)字能夠組成多少個四位數(shù)?
(2)用所給數(shù)字可以組成多少個沒有重復(fù)數(shù)字的五位數(shù)?
(3)用所給數(shù)字可以組成多少個沒有重復(fù)數(shù)字且比3142大的數(shù)?(最后結(jié)果均用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊答案