函數(shù)f(x)=x-4+log2x的零點所在的區(qū)間是( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)
考點:函數(shù)零點的判定定理
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)函數(shù)零點的判斷條件,即可得到結(jié)論.
解答: 解:∵f(x)=x-4+log2x,則函數(shù)f(x)單調(diào)遞增,
∵f(2)=2-4+log22=-1<0,f(3)=3-4+log23=log23-1>0,
∴f(2)f(3)<0,
在區(qū)間(2,3)內(nèi)函數(shù)f(x)存在零點,
故選:C
點評:本題主要考查方程根的存在性,利用函數(shù)零點的條件判斷零點所在的區(qū)間是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

直線l過點P(-2,0)且與圓x2+y2=1相切,則l的斜率是( 。
A、±1
B、±
1
2
C、±
3
D、±
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}通項公式為an=(-2)n,則在數(shù)列{an}的前10項中隨機抽取一項,該項不小于8的概率是( 。
A、
3
10
B、
2
5
C、
1
2
D、
3
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
x-[x],x<0
f(x-1),x≥0
,其中[x]表示不超過x的最大整數(shù),如[-1.6]=-2,[1]=1,[1.2]=1,若直線y=kx+1(k<0)與函數(shù)y=f(x)的圖象恰有2個不同的交點,則k的取值范圍是(  )
A、[-
1
2
,-
1
3
B、[-1,-
1
2
C、(-1,-
1
2
]
D、(-
1
2
,-
1
3
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x2-6x+1,x∈[2,5]的值域是( 。
A、[-8,-4]
B、[-8,-4)
C、[-7,-4]
D、[-7,-4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
2x+6
的定義域為( 。
A、(-∞,-3)
B、(-3,+∞)
C、(-∞,-3]
D、[-3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)是連續(xù)函數(shù),且在x=1處存在導數(shù).如函數(shù)f(x)及其導函數(shù)f′(x)滿足f′(x)•lnx=x-
f(x)
x
,則函數(shù)f(x)( 。
A、既有極大值,又有極小值
B、有極大值,無極小值
C、有極小值,無極大值
D、既沒有極大值,又沒有極小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
(1)
sin250°
1+sin10°
;
(2)
2cos10°-sin20°
sin70°
;
(3)
3
tan12°-3
(4cos212°-2)•sin12°
;
(4)cos20°cos40°cos60°cos80°;
(5)4cos50°-tan40°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關(guān)于x的方程x2-ax+a2-4=0有兩個正實數(shù)根,求a的取值范圍.

查看答案和解析>>

同步練習冊答案