【題目】已知在數(shù)列{an}中, .,n∈N*
(1)求證:1<an+1<an<2;
(2)求證: ;
(3)求證:n<sn<n+2.

【答案】
(1)證明:先用數(shù)學(xué)歸納法證明1<an<2.

①.n=1時(shí) ,

②.假設(shè)n=k時(shí)成立,即1<ak<2.

那么n=k+1時(shí), 成立.

由①②知1<an<2,n∈N*恒成立.

所以1<an+1<an<2成立.


(2)證明: ,

當(dāng)n≥3時(shí), 而1<an<2.所以

,得 ,

所以


(3)證明:由(1)1<an<2得sn>n

由(2)得 ,


【解析】(1)先用數(shù)學(xué)歸納法證明1<an<2.由. .可證得1<an+1<an<2成立.(2) ,
當(dāng)n≥3時(shí),由 ,得
,

即可證得 (3)由(1)1<an<2得sn>n
由(2)得 ,

【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)列的通項(xiàng)公式的相關(guān)知識(shí)可以得到問題的答案,需要掌握如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+ )(x∈R),下面結(jié)論錯(cuò)誤的是(
A.函數(shù)f(x)的最小正周期為π
B.函數(shù)f(x)是偶函數(shù)
C.函數(shù)f(x)的圖象關(guān)于直線 對(duì)稱
D.函數(shù)f(x)在區(qū)間[0, ]上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)(其中)的部分圖象如圖所示,把函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,再向下平移個(gè)單位,得到函數(shù)的圖像。

(1)當(dāng)時(shí),若方程恰好有兩個(gè)不同的根,求的取值范圍及的值;

(2)令,若對(duì)任意都有恒成立,求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ﹣k( +lnx)(k為常數(shù),e=2.71828…是自然對(duì)數(shù)的底數(shù)). (Ⅰ)當(dāng)k≤0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在(0,2)內(nèi)存在兩個(gè)極值點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“雙十一網(wǎng)購狂歡節(jié)”源于淘寶商城(天貓)2009年11月11 日舉辦的促銷活動(dòng),當(dāng)時(shí)參與的商家數(shù)量和促銷力度均有限,但營(yíng)業(yè)額遠(yuǎn)超預(yù)想的效果,于是11月11日成為天貓舉辦大規(guī)模促銷活動(dòng)的固定日期.如今,中國(guó)的“雙十一”已經(jīng)從一個(gè)節(jié)日變成了全民狂歡的“電商購物日”.某淘寶電商分析近8年“雙十一”期間的宣傳費(fèi)用(單位:萬元)和利潤(rùn)(單位:十萬元)之間的關(guān)系,得到下列數(shù)據(jù):

2

3

4

5

6

8

9

11

1

2

3

3

4

5

6

8

(1)請(qǐng)用相關(guān)系數(shù)說明之間是否存在線性相關(guān)關(guān)系(當(dāng)時(shí),說明之間具有線性相關(guān)關(guān)系);

(2)根據(jù)(1)的判斷結(jié)果,建立之間的回歸方程,并預(yù)測(cè)當(dāng)時(shí),對(duì)應(yīng)的利潤(rùn)為多少(精確到0.1).

附參考公式:回歸方程中最小二乘估計(jì)分別為

,相關(guān)系數(shù)

參考數(shù)據(jù):

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,,,點(diǎn)內(nèi)(包括邊界)的一動(dòng)點(diǎn),且,則的最大值為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱柱ABCA1B1C1中,△ABC與△A1B1C1都為正三角形且AA1⊥面ABCF、F1分別是ACA1C1的中點(diǎn).

求證:(1)平面AB1F1平面C1BF;

(2)平面AB1F1⊥平面ACC1A1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1 ,曲線C2 (θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系. (Ⅰ)求曲線C1 , C2的極坐標(biāo)方程;
(Ⅱ)曲線C3 (t為參數(shù),t>0, )分別交C1 , C2于A,B兩點(diǎn),當(dāng)α取何值時(shí), 取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),正數(shù)滿足,證明: .

查看答案和解析>>

同步練習(xí)冊(cè)答案