【題目】中,,點(diǎn)內(nèi)(包括邊界)的一動(dòng)點(diǎn),且,則的最大值為____________

【答案】

【解析】

以A為原點(diǎn),以AB所在的直線(xiàn)為x軸,建立平面直角坐標(biāo)系,根據(jù)向量的坐標(biāo)運(yùn)算求得y=(x﹣3),當(dāng)該直線(xiàn)與直線(xiàn)BC相交時(shí),||取得最大值.

中,,,

∴b=10,∴B=90°;

以A為原點(diǎn),以AB所在的直線(xiàn)為x軸,建立如圖所示的坐標(biāo)系,

如圖所示,

∵AB=5,AC=10,∠BAC=60°,

∴A(0,0),B(5,0),C(5,5),

設(shè)點(diǎn)P為(x,y),0≤x≤5,0≤y≤

=λ,

∴(x,y)=(5,0)﹣λ(5,5)=(3﹣2λ,﹣2λ),

,

∴y=(x﹣3),①

直線(xiàn)BC的方程為x=5,②,

聯(lián)立①②,得,

此時(shí)||最大,

∴|AP|==

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)g(x)=a﹣x2 ≤x≤e,e為自然對(duì)數(shù)的底數(shù))與h(x)=2lnx的圖象上存在關(guān)于x軸對(duì)稱(chēng)的點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.[1, +2]
B.[1,e2﹣2]
C.[ +2,e2﹣2]
D.[e2﹣2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x),g(x)的定義域都是D,直線(xiàn)x=x0(x0∈D),與y=f(x),y=g(x)的圖象分別交于A,B兩點(diǎn),若|AB|的值是不等于0的常數(shù),則稱(chēng)曲線(xiàn) y=f(x),y=g(x)為“平行曲線(xiàn)”,設(shè)f(x)=ex﹣alnx+c(a>0,c≠0),且y=f(x),y=g(x)為區(qū)間(0,+∞)的“平行曲線(xiàn)”,g(1)=e,g(x)在區(qū)間(2,3)上的零點(diǎn)唯一,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)為參數(shù)),曲線(xiàn)為參數(shù)).

(1)設(shè)相交于兩點(diǎn),求的值;

(2)若把曲線(xiàn)上各點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的,縱坐標(biāo)壓縮為原來(lái)的,得到曲線(xiàn),設(shè)點(diǎn)是曲線(xiàn)上的一個(gè)動(dòng)點(diǎn),求它到直線(xiàn)的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在數(shù)列{an}中, .,n∈N*
(1)求證:1<an+1<an<2;
(2)求證:
(3)求證:n<sn<n+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,他在所著的《數(shù)學(xué)九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入n,x的值分別為4,2,則輸出v的值為(
A.66
B.33
C.16
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于圓周率π,數(shù)學(xué)發(fā)展史上出現(xiàn)過(guò)許多很有創(chuàng)意的求法,如著名的蒲豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過(guò)設(shè)計(jì)下面的實(shí)驗(yàn)來(lái)估計(jì)π的值:先請(qǐng)200名同學(xué),每人隨機(jī)寫(xiě)下一個(gè)都小于1 的正實(shí)數(shù)對(duì)(x,y);再統(tǒng)計(jì)兩數(shù)能與1構(gòu)成鈍角三角形三邊的數(shù)對(duì)(x,y)的個(gè)數(shù)m;最后再根據(jù)統(tǒng)計(jì)數(shù)m來(lái)估計(jì)π的值.假如統(tǒng)計(jì)結(jié)果是m=56,那么可以估計(jì)π≈ . (用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知多面體EABCDF的底面ABCD是邊長(zhǎng)為2的正方形,EA⊥底面ABCD,F(xiàn)D∥EA,且
(Ⅰ)記線(xiàn)段BC的中點(diǎn)為K,在平面ABCD內(nèi)過(guò)點(diǎn)K作一條直線(xiàn)與平面ECF平行,要求保留作圖痕跡,但不要求證明.
(Ⅱ)求直線(xiàn)EB與平面ECF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在海岸A處,發(fā)現(xiàn)北偏東方向,距離A n mileB處有一艘走私船,在A處北偏西方向,距離A2 n mileC處有一艘緝私艇奉命以n mile / h的速度追截走私船,此時(shí),走私船正以10 n mile / h的速度從B處向北偏東方向逃竄,問(wèn)緝私艇沿什么方向行駛才能最快追上走私船?并求出所需時(shí)間。(本題解題過(guò)程中請(qǐng)不要使用計(jì)算器,以保證數(shù)據(jù)的相對(duì)準(zhǔn)確和計(jì)算的方便)

查看答案和解析>>

同步練習(xí)冊(cè)答案