【題目】函數(shù)f(x),g(x)的定義域都是D,直線x=x0(x0∈D),與y=f(x),y=g(x)的圖象分別交于A,B兩點,若|AB|的值是不等于0的常數(shù),則稱曲線 y=f(x),y=g(x)為“平行曲線”,設f(x)=ex﹣alnx+c(a>0,c≠0),且y=f(x),y=g(x)為區(qū)間(0,+∞)的“平行曲線”,g(1)=e,g(x)在區(qū)間(2,3)上的零點唯一,則a的取值范圍是

【答案】[3e3 , +∞)
【解析】解:由題意可得|ex﹣alnx+c﹣g(x)|對x∈(0,+∞)恒為常數(shù),且不為0. 令x=1,可得|e﹣0+c﹣g(1)|=|e+c﹣e|=|c|>0.
由g(x)在區(qū)間(2,3)上的零點唯一,可得:
f(x)=ex﹣alnx+c在(2,3)上無極值點,
即有f′(x)=ex = ,
則xex﹣a=0無實數(shù)解,
由y=xex , 可得y′=(1+x)ex>0,在(2,3)成立,即有函數(shù)y遞增,
可得y∈(2e2 , 3e3),
則a≥3e3 ,
所以答案是:[3e3 , +∞).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知在△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c,若 且sinC=cosA (Ⅰ)求角A、B、C的大;
(Ⅱ)函數(shù)f(x)=sin(2x+A)+cos(2x﹣ ),求函數(shù)f(x)單調遞增區(qū)間,指出它相鄰兩對稱軸間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1的左焦點F1的坐標為(﹣ ,0),F(xiàn)2是它的右焦點,點M是橢圓C上一點,△MF1F2的周長等于4+2
(1)求橢圓C的方程;
(2)過定點P(0,2)作直線l與橢圓C交于不同的兩點A,B,且OA⊥OB(其中O為坐標原點),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù).

)若函數(shù)上遞減, 求實數(shù)的取值范圍;

)當時,求的最小值的最大值;

)設,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)(其中)的部分圖象如圖所示,把函數(shù)的圖像向右平移個單位長度,再向下平移個單位,得到函數(shù)的圖像。

(1)當時,若方程恰好有兩個不同的根,求的取值范圍及的值;

(2)令,若對任意都有恒成立,求的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】通過隨機詢問250名不同性別的高中生在購買食物時是否看營養(yǎng)說明書,得到如下列聯(lián)表:

總計

讀營養(yǎng)說明書

90

60

150

不讀營養(yǎng)說明書

30

70

100

總計

120

130

250

從調查的結果分析,認為性別和讀營養(yǎng)說明書的關系為( )

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

A. 95%以上認為無關 B. 90%~95%認為有關 C. 95%~99.9%認為有關 D. 99.9%以上認為有關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= ﹣k( +lnx)(k為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)). (Ⅰ)當k≤0時,求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)若函數(shù)f(x)在(0,2)內存在兩個極值點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,,,點內(包括邊界)的一動點,且,則的最大值為____________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設有下面四個命題
p1:若復數(shù)z滿足 ∈R,則z∈R;
p2:若復數(shù)z滿足z2∈R,則z∈R;
p3:若復數(shù)z1 , z2滿足z1z2∈R,則z1=
p4:若復數(shù)z∈R,則 ∈R.
其中的真命題為(  )
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4

查看答案和解析>>

同步練習冊答案