【題目】已知函數(shù)g(x)=a﹣x2( ≤x≤e,e為自然對數(shù)的底數(shù))與h(x)=2lnx的圖象上存在關(guān)于x軸對稱的點,則實數(shù)a的取值范圍是( )
A.[1, +2]
B.[1,e2﹣2]
C.[ +2,e2﹣2]
D.[e2﹣2,+∞)
【答案】B
【解析】解:由已知,得到方程a﹣x2=﹣2lnx﹣a=2lnx﹣x2在 上有解.
設(shè)f(x)=2lnx﹣x2 , 求導(dǎo)得:f′(x)= ﹣2x= ,
∵ ≤x≤e,∴f′(x)=0在x=1有唯一的極值點,
∵f( )=﹣2﹣ ,f(e)=2﹣e2 , f(x)極大值=f(1)=﹣1,且知f(e)<f( ),
故方程﹣a=2lnx﹣x2在 上有解等價于2﹣e2≤﹣a≤﹣1.
從而a的取值范圍為[1,e2﹣2].
故選B.
由已知,得到方程a﹣x2=﹣2lnx﹣a=2lnx﹣x2在 上有解,構(gòu)造函數(shù)f(x)=2lnx﹣x2 , 求出它的值域,得到﹣a的范圍即可.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】重慶一中為了增強學(xué)生的記憶力和辨識力,組織了一場類似《最強大腦》的賽,兩隊各由4名選手組成,每局兩隊各派一名選手,除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0分.假設(shè)每局比賽隊選手獲勝的概率均為,且各局比賽結(jié)果相互獨立,比賽結(jié)束時隊的得分高于隊的得分的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c,若 且sinC=cosA (Ⅰ)求角A、B、C的大小;
(Ⅱ)函數(shù)f(x)=sin(2x+A)+cos(2x﹣ ),求函數(shù)f(x)單調(diào)遞增區(qū)間,指出它相鄰兩對稱軸間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= x2+ax﹣lnx(a∈R). (Ⅰ)當(dāng)a=1時,求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a>1時,討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若對任意a∈(3,4)及任意x1 , x2∈[1,2],恒有 m+ln2>|f(x1)﹣f(x2)|成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2x+ )(x∈R),下面結(jié)論錯誤的是( )
A.函數(shù)f(x)的最小正周期為π
B.函數(shù)f(x)是偶函數(shù)
C.函數(shù)f(x)的圖象關(guān)于直線 對稱
D.函數(shù)f(x)在區(qū)間[0, ]上是增函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下判斷正確的是(。
A. 命題“負數(shù)的平方是正數(shù)”不是全稱命題
B. 命題“”的否定是“”
C. “”是“函數(shù)的最小正周期為”的必要不充分條件
D. “”是“函數(shù)是偶函數(shù)”的充要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1的左焦點F1的坐標為(﹣ ,0),F(xiàn)2是它的右焦點,點M是橢圓C上一點,△MF1F2的周長等于4+2 .
(1)求橢圓C的方程;
(2)過定點P(0,2)作直線l與橢圓C交于不同的兩點A,B,且OA⊥OB(其中O為坐標原點),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(Ⅰ)若函數(shù)在上遞減, 求實數(shù)的取值范圍;
(Ⅱ)當(dāng)時,求的最小值的最大值;
(Ⅲ)設(shè),求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com