【題目】如圖,菱形與等邊所在的平面相互垂直, ,點E,F分別為PCAB的中點

(Ⅰ)求證:EF∥平面PAD

(Ⅱ)證明:

(Ⅲ)求三棱錐的體積.

【答案】見解析;見解析;.

【解析】試題分析:I設(shè)的中點,連結(jié),由中位線定理可得從而四邊形為平行四邊形, ,由線面平行的判定定理可得結(jié)論;(Ⅱ)由為等邊三角形得,由四邊形為菱形,可得,從而平面,進而可得結(jié)論;(Ⅲ)根據(jù)“等積變換”可得,由面面垂直的性質(zhì)可得平面,∴為三棱錐的高,根據(jù)棱錐的體積公式可得結(jié)果.

試題解析:(Ⅰ)取PD的中點G,連結(jié)GEGA

,

∴四邊形AFEG為平行四邊形,∴

平面PAD,EF平面PAD

∴EF∥平面PAD

(Ⅱ)取中點,連結(jié),

因為為等邊三角形,所以

因為四邊形為菱形,所以,

又因為,所以為等邊三角形,

所以

因為,所以平面,

因為平面,所以

(Ⅲ)連結(jié)FC,PE=EC,

∵四邊形為菱形,且

∵平面平面,平面平面, 平面,

平面,

為三棱錐的高.

【方法點晴】本題主要考查線面平行的判定定理、面面垂直的性質(zhì)、利用等積變換求三棱錐體積,屬于難題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面. 本題(1)是就是利用方法①證明的.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的偶函數(shù)yf(x)滿足:f(x+4)=f(x)+f(2),且當x∈[0,2]時,yf(x)單調(diào)遞減,給出以下四個命題:

f(2)=0;②直線x=-4為函數(shù)yf(x)圖象的一條對稱軸;③函數(shù)yf(x)在[8,10]上單調(diào)遞增;④若關(guān)于x的方程f(x)=m在[-6,-2]上的兩根分別為x1,x2,則x1x2=-8.

其中所有正確命題的序號為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在統(tǒng)計學中,偏差是指個別測定值與測定的平均值之差,在成績統(tǒng)計中,我們把某個同學的某科考試成績與該科班平均分的差叫某科偏差,班主任為了了解個別學生的偏科情況,對學生數(shù)學偏差x(單位:分)與物理偏差y(單位:分)之間的關(guān)系進行學科偏差分析,決定從全班56位同學中隨機抽取一個容量為8的樣本進行分析,得到他們的兩科成績偏差數(shù)據(jù)如下:

學生序號

1

2

3

4

5

6

7

8

數(shù)學偏差x

20

15

13

3

2

5

10

18

物理偏差y

6.5

3.5

3.5

1.5

0.5

0.5

2.5

3.5

(1)已知xy之間具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;

(2)若這次考試該班數(shù)學平均分為118分,物理平均分為90.5,試預(yù)測數(shù)學成績126分的同學的物理成績.

參考公式 .

參考數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從高一年級學生中隨機抽取40名學生,將他們的期中考試數(shù)學成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖,其中前三段的頻率成等比數(shù)列.

(Ⅰ)求圖中實數(shù)a,b的值;

(Ⅱ)若該校高一年級共有學生640人,試估計該校高一年級期中考試數(shù)學成績不低于80分的人數(shù);

(Ⅲ)若從樣本中數(shù)學成績在[40,50)與[90,100]兩個分數(shù)段內(nèi)的學生中隨機選取兩名學生,求這兩名學生的數(shù)學成績之差的絕對值大于10的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2017·黃岡質(zhì)檢)如圖,在棱長均為2的正四棱錐PABCD中,點EPC的中點,則下列命題正確的是(  )

A. BE∥平面PAD,且BE到平面PAD的距離為

B. BE∥平面PAD,且BE到平面PAD的距離為

C. BE與平面PAD不平行,且BE與平面PAD所成的角大于30°

D. BE與平面PAD不平行,且BE與平面PAD所成的角小于30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】家政服務(wù)公司根據(jù)用戶滿意程度將本公司家政服務(wù)員分為兩類,其中A類服務(wù)員12名,B類服務(wù)員x名.

(Ⅰ)若采用分層抽樣的方法隨機抽取20名家政服務(wù)員參加技術(shù)培訓,抽取到B類服務(wù)員的人數(shù)是16, 求x的值;

(Ⅱ)某客戶來公司聘請2名家政服務(wù)員,但是由于公司人員安排已經(jīng)接近飽和,只有3名A類家政服務(wù)員和2名B類家政服務(wù)員可供選擇,求該客戶最終聘請的家政服務(wù)員中既有A類又有B類的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),a∈R.

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若f(x)在(1,2)上是單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內(nèi)角AB,C的對邊分別為a,bc,已知2cosCacosB+bcosA=c

)求C;()若c=ABC的面積為,求ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學為研究學生的身體素質(zhì)與課外體育鍛煉時間的關(guān)系,對該校200名學生的課外體育鍛煉平均每天運動的時間(單位:分鐘)進行調(diào)查,將收集的數(shù)據(jù)分成六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時間不低于40分鐘的學生評價為“課外體育達標”.

(1)請根據(jù)直方圖中的數(shù)據(jù)填寫下面的列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“課外體育達標”與性別有關(guān)?

(2)在[0,10),[40,50)這兩組中采取分層抽樣,抽取6人,再從這6名學生中隨機抽取2人參加體育知識問卷調(diào)查,求這2人中一人來自“課外體育達標”和一人來自“課外體育不達標”的概率.

查看答案和解析>>

同步練習冊答案