【題目】△ABC的內(nèi)角A,B,C的對邊分別為ab,c,已知2cosCacosB+bcosA=c

)求C;()若c=,ABC的面積為,求ABC的周長.

【答案】(1) C= (2) ABC的周長為+

【解析】試題分析:(1)由正弦定理,兩角和的正弦函數(shù)公式,三角形內(nèi)角和定理化簡已知可得2cosCsinC=sinC,結(jié)合范圍C(0,π),解得cosC=,可得C的值.(2)由三角形的面積公式可求ab=3,利用余弦定理解得a+b的值,即可得解ABC的周長.

解析:

△ABC中,0Cπ,∴sinC≠0

利用正弦定理化簡得:2cosCsinAcosB+sinBcosA=sinC,

整理得:2cosCsinA+B=sinC,

2cosCsinπ﹣A+B))=sinC,2cosCsinC=sinC

cosC=,C=

)由余弦定理得3=a2+b22ab

a+b2﹣3ab=3,

S= absinC= ab=, ab=16,

a+b248=3a+b=,

∴△ABC的周長為+ .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以平面直角坐標(biāo)系的原點為極點,x軸正半軸為極軸建立極坐標(biāo)系.已知圓C的極坐標(biāo)方程為ρ=2sin θ,直線l的參數(shù)方程為 (t為參數(shù)),若l與C交于A,B兩點.

(Ⅰ)求|AB|;

(Ⅱ)設(shè)P(1,2),求|PA|·|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形與等邊所在的平面相互垂直, ,點E,F分別為PCAB的中點

(Ⅰ)求證:EF∥平面PAD

(Ⅱ)證明: ;

(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R的函數(shù)是偶函數(shù),且滿足上的解析式為,過點作斜率為k的直線l,若直線l與函數(shù)的圖象至少有4個公共點,則實數(shù)k的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(導(dǎo)學(xué)號:05856262)

如圖所示,在斜三棱柱ABCA1B1C1中,ABBC=1,AA1=2,DAC的中點,AB⊥平面B1C1CB,∠BCC1=60°.

(Ⅰ)求證:AC⊥平面BDC1

(Ⅱ)E是線段CC1上的動點,判斷點E到平面AA1B1B的距離是否為定值,若是,求出此定值;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線.

(1)求曲線在點P(2,4)處的切線方程;

(2)求曲線過點P(2,4)的切線方程;

(3)求斜率為1的曲線的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C 的離心率為,右焦點為F,上頂點為A,且△AOF的面積為 (O為坐標(biāo)原點).

(1)求橢圓C的方程;

(2)設(shè)P是橢圓C上的一點,過P的直線與以橢圓的短軸為直徑的圓切于第一象限內(nèi)的一點M,證明:|PF||PM|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=emxx2mx.

(1)證明:f(x)在(-∞,0)單調(diào)遞減,在(0,+∞)單調(diào)遞增;

(2)若對于任意x1,x2∈[-1,1],都有,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(導(dǎo)學(xué)號:05856312)[選修4-5:不等式選講]

已知函數(shù)f(x)=|xm|-2|x-1|(m∈R).

(Ⅰ)當(dāng)m=3時,求函數(shù)f(x)的最大值;

(Ⅱ)解關(guān)于x的不等式f(x)≥0.

查看答案和解析>>

同步練習(xí)冊答案