【題目】已知函數(shù),(其中)的圖象關于點成中心對稱,且與點相鄰的一個最低點為,則對于下列判斷:

①直線是函數(shù)圖象的一條對稱軸;

②點是函數(shù)的一個對稱中心;

③函數(shù)的圖象的所有交點的橫坐標之和為

其中所有正確的判斷是(

A.①②B.①③C.②③D.

【答案】C

【解析】

先根據(jù)圖象關于點成中心對稱,且與點相鄰的一個最低點為,分別代入求解計算出的解析式,再根據(jù)三角函數(shù)的圖像性質逐個判斷即可.

因為的圖象關于點成中心對稱,且與點相鄰的一個最低點為,故,故.所以.

.又圖像最低點為,.

.,..

對①,當,不是正弦函數(shù)的對稱軸.故①錯誤.

對②,,,故點是函數(shù)的一個對稱中心,故②正確.

對③,因為,,所以函數(shù)有6個交點.設交的橫坐標分別為,根據(jù)圖像以及五點作圖法的方法可知,當時解得為6個橫坐標的對稱軸.

.故③正確.

綜上,②③正確.

故選:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在四棱柱中,平面,底面是邊長為的正方形,交于點,交于點,且.

(Ⅰ)證明:平面;

(Ⅱ)求的長度;

(Ⅲ)求直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設有限數(shù)列,定義集合為數(shù)列的伴隨集合.

(Ⅰ)已知有限數(shù)列和數(shù)列.分別寫出的伴隨集合;

(Ⅱ)已知有限等比數(shù)列,求的伴隨集合中各元素之和;

(Ⅲ)已知有限等差數(shù)列,判斷是否能同時屬于的伴隨集合,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=alnx21在定義域(0,2)內有兩個極值點.

1)求實數(shù)a的取值范圍;

2)設x1x2fx)的兩個極值點,求證:lnx1+lnx2+lna0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將字母放入的方表格,每個格子各放一個字母,則每一行的字母互不相同,每一列的字母也互不相同的概率為_______;若共有行字母相同,則得k分,則所得分數(shù)的數(shù)學期望為______;(注:橫的為行,豎的為列;比如以下填法第二行的兩個字母相同,第1,3行字母不同,該情況下

a

b

c

c

a

b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正四棱錐的底面邊長為、分別為、的中點.

1)當時,證明:平面平面

2)若平面與底面所成銳二面角為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐中,底面ABCD是梯形,且,,,,AD的中點為E,則四棱錐外接球的表面積為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學就業(yè)部從該大學2018年畢業(yè)且已就業(yè)的大學本科生中隨機抽取了100人進行了問卷調查,其中有一項是他們的薪酬,經(jīng)調查統(tǒng)計,他們的月薪在3000元到10000元之間,根據(jù)統(tǒng)計數(shù)據(jù)得到如下頻率分布直方圖:

若月薪在區(qū)間的左側,則認為該大學本科生屬“就業(yè)不理想”的學生,學校將與本人聯(lián)系,為其提供更好的指導意見.其中分別是樣本平均數(shù)和樣本標準差,計算得(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)

1)現(xiàn)該校2018屆本科畢業(yè)生張靜的月薪為3600元,判斷張靜是否屬于“就業(yè)不理想”的學生?用樣本估計總體,從該校2018屆本科畢業(yè)生隨機選取一人,屬于“就業(yè)不理想”的概率?

2)為感謝同學們對調查的支持配合,該校利用分層抽樣的方法從樣本的前3組中抽出6人,每人贈送一份禮品,并從這6人中再抽取2人,每人贈送新款某手機1部,求獲贈手機的2人中恰有1人月薪不超過5000元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù),試討論的單調性;

2)若,,求的取值范圍.

查看答案和解析>>

同步練習冊答案