【題目】某校從高一年級的一次月考成績中隨機抽取了 50名學生的成績(滿分100分,且抽取的學生成績都在內),按成績分為,,,,五組,得到如圖所示的頻率分布直方圖.
(1)用分層抽樣的方法從月考成績在內的學生中抽取6人,求分別抽取月考成績在和內的學生多少人;
(2)在(1)的前提下,從這6名學生中隨機抽取2名學生進行調查,求月考成績在內至少有1名學生被抽到的概率.
【答案】(1)有4人,有2人;(2)
【解析】
(1)由頻率分布直方圖,求出成績在和內的頻率的比值,再按比例抽取即可;
(2)由古典概型的概率的求法,先求出從這6名學生中隨機抽取2名學生的所有不同取法,再求出被抽到的學生至少有1名月考成績在內的不同取法,再求解即可.
解:(1)因為,所以,
則月考成績在內的學生有人;
月考成績在內的學生有人,
則成績在和內的頻率的比值為,
故用分層抽樣的方法從月考成績在內的學生中抽取4人,
從月考成績在內的學生中抽取2人.
(2)由(1)可知,被抽取的6人中有4人的月考成績在內,分別記為,,,;有2人的月考成績在內,分別記為,.
則從這6名學生中隨機抽取2名學生的情況為,,,,,,,,,,,,,,,共15種;
被抽到的學生至少有1名月考成績在內的情況為,,,,,,,,,共9種.
故月考成績內至少有1名學生被抽到的概率為.
科目:高中數學 來源: 題型:
【題目】已知函數若方程f(x)=m有4個不同的實根x1,x2,x3,x4,且x1<x2<x3<x4,則()(x3+x4)=( 。
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知直線的參數方程為(為參數).在以坐標原點為極點,軸的正半軸為極軸,且與直角坐標系長度單位相同的極坐標系中,曲線的極坐標方程是.
(1)求直線的普通方程與曲線的直角坐標方程;
(2)設點.若直與曲線相交于兩點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,,(其中為自然對數的底數,…).
(1)當時,求函數的極值;
(2)若函數在區(qū)間上單調遞增,求的取值范圍;
(3)若,當時,恒成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線的參數方程為(t為參數).以坐標原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程是,曲線的極坐標方程是.
(1)求直線l和曲線的直角坐標方程,曲線的普通方程;
(2)若直線l與曲線和曲線在第一象限的交點分別為P,Q,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司推廣線下分店,計劃在S市的A區(qū)開設分店,為了確定在該區(qū)開設分店的個數,該公司對該市已開設分店的其他區(qū)的數據作了初步處理后得到下列表格.記x表示在各區(qū)開設分店的個數,y表示這個x個分店的年收入之和.
(1)該公司已經過初步判斷,可用線性回歸模型擬合y與x的關系,求y關于x的線性回歸方程
(2)假設該公司在A區(qū)獲得的總年利潤z(單位:百萬元)與x,y之間的關系為,請結合(1)中的線性回歸方程,估算該公司應在A區(qū)開設多少個分店時,才能使A區(qū)平均每個分店的年利潤最大?
(參考公式:,其中,)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 f(x)=ax+(1﹣a)lnx+(a∈R)
(Ⅰ)當a=0時,求 f(x)的極值;
(Ⅱ)當a<0時,求 f(x)的單調區(qū)間;
(Ⅲ)方程 f(x)=0的根的個數能否達到3,若能請求出此時a的范圍,若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com