設(shè)a為常數(shù),求數(shù)列a,2a2,3a2,…,nan的前n項和.
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:設(shè)數(shù)列a,2a2,3a2,…,nan的前n項和為Sn,當a=0時,則Sn=0;當a=1時,Sn=
n(n+1)
2
.若a≠0且a≠1時,利用錯位相減法求解.
解答: 解:設(shè)數(shù)列a,2a2,3a2,…,nan的前n項和為Sn,
當a=0時,則Sn=0.
當a=1時,Sn=1+2+3+…+n=
n(n+1)
2

若a≠0且a≠1時,則Sn=a+2a2+3a3+4a4+…+nan,①
∴aSn=a2+2 a3+3 a4+…+nan+1,②
①-②,得(1-a) Sn=a+a2+a3+…+an-nan+1
=
a(1-an)
1-a
-nan+1

∴Sn=
a-an+1
(1-a)2
-
nan+1
1-a
,(a≠1)
若a=0,則Sn=0適合上式.
Sn=
n(n+1)
2
,n=1
a-an+1
(1-a)2
-
nan+1
1-a
,n≠1

∴數(shù)列a,2a2,3a2,…,nan的前n項和為
n(n+1)
2
,n=1
a-an+1
(1-a)2
-
nan+1
1-a
,n≠1
..
點評:本題考查數(shù)列的前n項和的求法,是中檔題,解題時要認真審題,注意錯位相減法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足(2a+c)cosB+bcosC=0.
(1)求角B的值;
(2)設(shè)
m
=(sinA,cosA),
n
=(1,
3
),當
m
n
取到最大值時,求角A、角C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,異面直線A1B與AC所成的角是
 
°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,直線l的參數(shù)方程為
x=3-
2
2
t
y=
5
+
2
2
t
(t為參數(shù)).在極坐標系(與直角坐標系xOy取相同的單位長度,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=2
5
sinθ.
(Ⅰ)求圓C的直角坐標方程;
(Ⅱ)設(shè)圓C與直線l交于A,B兩點,若點P坐標為(3,
5
),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

目前四年一度的世界杯在巴西舉行,為調(diào)查哈三中高二學(xué)生是否熬夜看世界杯用簡單
隨機抽樣的方法調(diào)查了110名高二學(xué)生,結(jié)果如下表:
性別
是否熬夜看球
4020
2030
(Ⅰ)若哈三中高二學(xué)年共有1100名學(xué)生,試估計大約有多少學(xué)生熬夜看球;
(Ⅱ)能否有99%以上的把握認為“熬夜看球與性別有關(guān)”?
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,E為AB的中點,F(xiàn)為AA1的中點,求證:CE,D1F,DA三線共點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足
x+2y-1≥0
x-2y+1≥0
x≤3

(Ⅰ)求x+y的最大值與最小值;
(Ⅱ)求
y
x+2
的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cosx(cosx+
3
sinx)+a(x∈R,a∈R,a是常數(shù)).
(Ⅰ)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若x∈[0,
π
2
]時,函數(shù)f(x)的最大值為4,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

商場每月售出的某種商品的件數(shù)X是一個隨機變量,其分布列如下表.
X12312
P
1
12
1
12
1
12
1
12
每售出一件可獲利300元,如果銷售不出去,每件每月需要保養(yǎng)費100元.該商場月初進貨9件這種商品,則銷售該商品獲利的期望為
 

查看答案和解析>>

同步練習(xí)冊答案