16.已知命題p:|x-a|<4,命題q:(x-2)(3-x)>0.若¬p是¬q的充分不必要條件,則實數(shù)a的取值范圍是( 。
A.[-1,6]B.(-∞,-1)C.(6,+∞)D.(-∞,-1)∪(6,+∞)

分析 求出命題p,q的等價條件,利用¬p是¬q的充分不必要條件,轉(zhuǎn)化為q是p的充分不必要條件,即可求出a的取值范圍.

解答 解:∵|x-a|<4,
∴a-4<x<a+4,
即p:a-4<x<a+4,
∵(x-2)(x3-x)>0,
∴2<x<3,
即q:2<x<3.
∵¬p是¬q的充分不必要條件,
∴q是p的充分不必要條件,
即 $\left\{\begin{array}{l}{a+4≥3}\\{a-4≤2}\end{array}\right.$,(等號不能同時取得),
即 $\left\{\begin{array}{l}{a≥-1}\\{a≤6}\end{array}\right.$,
∴-1≤a≤6,故選:A.

點評 本題主要考查充分條件和必要條件的應(yīng)用,利用不等式的解法求出等價條件是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知△ABC的頂點A(-3,0)和頂點B(3,0),頂點C在橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上,則$\frac{5sinC}{sinA+sinB}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知f(x)=$\overrightarrow a•\overrightarrow b$,其中$\overrightarrow a=(2cosx,-\sqrt{3}sin2x),\overrightarrow b=(cosx,1),x∈R$.
(I)求f(x)在區(qū)間[-π,π]上的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,角A、B、C所對的邊分別為a、b、c,f(A)=-1,a=$\frac{{\sqrt{7}}}{2}$,且向量$\overrightarrow m=(sinB,-3)與\overrightarrow n=(2,sinC)$垂直,求邊長b和c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)$f(x)=\left\{\begin{array}{l}3-x,x<2\\{2^x}-3,x≥2\end{array}\right.$,若f(f(α))=1,則實數(shù)a的值為1,或log25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.命題“?x∈R,都有x2≥0”的否定為(  )
A.不存在x0∈R,使得$x_0^2<0$B.?x∈R,都有x2<0
C.?x0∈R,使得$x_0^2≥0$D.?x0∈R,使得$x_0^2<0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|$\frac{1}{2}$<2x≤2},B={x|ln(x-$\frac{1}{2}$)≤0},則A∩(∁RB)=( 。
A.B.(-1,$\frac{1}{2}$]C.[$\frac{1}{2}$,1)D.(-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且cosA•cosC-cos(A+C)=sin2B.
(Ⅰ)證明:a,b,c成等比數(shù)列;
(Ⅱ)若角B的平分線BD交AC于點D,且b=6,S△BAD=2S△BCD,求BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.中國有個名句“運籌帷幄之中,決勝千里之外”,其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌,古代是用算籌來進行計算,算籌是將幾寸長的小竹棍擺在平面上進行運算,算籌的擺放形式有縱橫兩種形式,如圖,當(dāng)表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位用橫式表示,以此類推.例如 6613 用算籌表示就是,則 8335 用算籌可表示為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù)在定義域中既是奇函數(shù)又是增函數(shù)的是( 。
A.y=2xB.y=-x3C.$y=3{x^{\frac{1}{3}}}$D.$y=x+\frac{1}{x}$

查看答案和解析>>

同步練習(xí)冊答案