已知一組變量x與y具有相關(guān)關(guān)系,對應(yīng)值如下表:根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程為
y
=0.5x+1.25,那么表中t的值是( 。
x3456
y3.5t44.5
A、2B、3C、3.25D、3.5
考點:線性回歸方程
專題:計算題,概率與統(tǒng)計
分析:根據(jù)回歸直線經(jīng)過樣本數(shù)據(jù)中心點,求出y的平均數(shù),進而可求出t值.
解答: 解:∵
.
x
=
3+4+5+6
4
=4.5,
y
=0.5x+1.25,
.
y
=0.35,
3.5+t+4+4.5
4
=3.5,
解得t=2,
故選:A.
點評:本題考查線性回歸方程的求法和應(yīng)用,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|lgx|,若0<a<b,且f(a)=f(b),則2a+3b的取值范圍是( 。
A、(2
6
,+∞)
B、[2
6
,+∞)
C、[5,+∞)
D、(5,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,小圓圈表示網(wǎng)絡(luò)的結(jié)點,結(jié)點之間的箭頭表示它們有網(wǎng)線相聯(lián),連線標注的數(shù)字表示該段網(wǎng)線單位時間內(nèi)可以通過的最大信息量.現(xiàn)從結(jié)點A向結(jié)點G傳遞信息,信息可以分開沿不同的路線同時傳遞.則單位時間內(nèi)傳遞的最大信息量為( 。
A、32B、7C、10D、14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)拋物線C:y2=4x的焦點為F,直線l過F且與C交于A,B兩點,若|AF|=3|BF|,則|AB|等于(  )
A、
5
2
B、
16
3
C、3
D、
17
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,恒滿足f(2x)=[f(x)]2的是( 。
A、f(x)=|x|
B、f(x)=
1
x
(x≠0)
C、f(x)=ex
D、f(x)=sinx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x),x∈[-1,3]的圖象如圖所示,令g(x)=
x
-1
f(t)dt,x∈(-1,3],則g(x)的圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sinx-cosx的最小值是( 。
A、
2
B、
2
-1
C、
2
+1
D、-
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=4x的焦點為F,△ABC的三個頂點均在拋物線上,若F是△ABC的重心,則|FA|+|FB|+|FC|=(  )
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cos(2x-
π
3
)+sin2x-cos2x,
(1)求f(x)的對稱軸方程;
(2)用“五點法”畫出函數(shù)f(x)在一個周期內(nèi)的簡圖;
(3)若x∈[-
π
12
,
π
2
],設(shè)函數(shù)g(x)=[f(x)]2+f(x),求g(x)的值域.

查看答案和解析>>

同步練習冊答案