【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則它的體積為

【答案】16
【解析】解:根據(jù)三視圖得出:該幾何體是鑲嵌在正方體中的四棱錐O﹣ABCD, 正方體的棱長為4,O、A、D分別為棱的中點,
∴OD=2 ,AB=DC=OC=2 ,
做OE⊥CD,垂足是E,
∵BC⊥平面ODC,∴BC⊥OE、BC⊥CD,則四邊形ABCD是矩形,
∵CD∩BC=C,∴OE⊥平面ABCD,
∵△ODC的面積S= =6,
∴6= ,得OE= ,
∴此四棱錐O﹣ABCD的體積V= =16,
所以答案是16.

【考點精析】認真審題,首先需要了解由三視圖求面積、體積(求體積的關鍵是求出底面積和高;求全面積的關鍵是求出各個側(cè)面的面積).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】對實數(shù)a和b,定義運算“”:ab= ,設函數(shù)f(x)=(x2﹣2)(x﹣x2),x∈R,若函數(shù)y=f(x)+c的圖象與x軸恰有兩個公共點,則實數(shù)c的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=( 的單調(diào)遞減區(qū)間為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為棱AB,BB1的中點,則直線BC1與EF所成角的余弦值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x其中x∈(0,1),以A,B為焦點且過點D的雙曲線的離心率為e1 , 以C,D為焦點且過點A的橢圓的離心率為e2 , 若對任意x∈(0,1)不等式t<e1+e2恒成立,則t的最大值為(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】里氏震級M的計算公式為:M=lgA﹣lgA0 , 其中A是測震儀記錄的地震曲線的最大振幅,A0是相應的標準地震的振幅,假設在一次地震中,測震儀記錄的最大振幅是1000,此時標準地震的振幅A0為0.001,則此次地震的震級為級;9級地震的最大的振幅是5級地震最大振幅的倍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1 =1(a>b>0)與雙曲線C2:x2 =1有公共的焦點,C2的一條漸近線與以C1的長軸為直徑的圓相交于A,B兩點.若C1恰好將線段AB三等分,則(
A.a2=
B.a2=3
C.b2=
D.b2=2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 ,a∈R.
(1)求f(x)的解析式;
(2)解關于x的方程f(x)=(a﹣1)4x
(3)設h(x)=2﹣xf(x), 時,對任意x1 , x2∈[﹣1,1]總有 成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=45°, , ,點D是AB的中點,求:
(1)邊AB的長;
(2)cosA的值和中線CD的長.

查看答案和解析>>

同步練習冊答案