如圖①,在等腰梯形ABCD中,AD∥BC,AB=AD,∠ABC=60°,E是BC的中點.如圖②,將△ABE沿AE折起,使二面角BAEC成直二面角,連結(jié)BC、BD,F(xiàn)是CD的中點,P是棱BC的中點.求證:
圖①圖②
(1)AE⊥BD;
(2)平面PEF⊥平面AECD.
科目:高中數(shù)學 來源: 題型:解答題
如圖,E是以AB為直徑的半圓弧上異于A,B的點,矩形ABCD所在平面垂直于該半圓所在的平面,且AB=2AD=2。
(1).求證:EA⊥EC;
(2).設(shè)平面ECD與半圓弧的另一個交點為F。
①求證:EF//AB;
②若EF=1,求三棱錐E—ADF的體積
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐中,平面,底面為矩形,為的中點.
(1)求證:;
(2)在線段上是否存在一點,使得平面?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,三棱錐A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F(xiàn)分別是AC,AD上的動點,且=λ(0<λ<1).
(1)求證:不論λ為何值,總有平面BEF⊥平面ABC;
(2)當λ為何值時,平面BEF⊥平面ACD..
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐PABCD中,PD⊥底面ABCD,AD⊥AB,CD∥AB,AB=AD=2,CD=3,直線PA與底面ABCD所成角為60°,點M、N分別是PA、PB的中點.求證:
(1)MN∥平面PCD;
(2)四邊形MNCD是直角梯形;
(3)DN⊥平面PCB.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在三棱柱ABC-A1B1C1中,D是BC的中點.
(1)若E為A1C1的中點,求證:DE∥平面ABB1A1;
(2)若E為A1C1上一點,且A1B∥平面B1DE,求的值..
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在三棱錐P-ABC中,△PAC,△ABC分別是以A、B為直角頂點的等腰直角三角形,AB=1.現(xiàn)給出三個條件:①PB=;②PB⊥BC;③平面PAB⊥平面ABC.試從中任意選取一個作為已知條件,并證明:PA⊥平面ABC;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點.
(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求二面角CPBA的余弦值..
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com