【題目】如圖,在四棱錐S—ABCD中,底面ABCD,底面ABCD是矩形,且,E是SA的中點.
(1)求證:平面BED平面SAB;
(2)求平面BED與平面SBC所成二面角(銳角)的大小.
【答案】(1)詳見解析(2).
【解析】
解:
(Ⅰ)∵SD⊥平面ABCD,∴平面SAD⊥平面ABCD,
∵AB⊥AD,∴AB⊥平面SAD,∴DE⊥AB.
∵SD=AD,E是SA的中點,∴DE⊥SA,
∵AB∩SA=A,∴DE⊥平面SAB
∴平面BED⊥平面SAB. …4分
(Ⅱ)建立如圖所示的坐標系D—xyz,不妨設AD=2,則
D(0,0,0),A(2,0,0),B(2,,0),
C(0,,0),S(0,0,2),E(1,0,1).
=(2,,0),=(1,0,1),=(2,0,0),=(0,-,2).
設m=(x1,y1,z1)是面BED的一個法向量,則因此可取m=(-1,,1). …8分
設n=(x2,y2,z2)是面SBC的一個法向量,則因此可取n=(0,,1). …10分
故平面BED與平面SBC所成銳二面角的大小為30°.…12分
科目:高中數(shù)學 來源: 題型:
【題目】設實數(shù)滿足,其中.實數(shù)滿足.
(1)若,且為真,求實數(shù)的取值范圍;
(2)非是非的充分不必要條件,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某運動員射擊一次所得環(huán)數(shù)的分布如下:
7 | 8 | 9 | 10 | ||
0 |
現(xiàn)進行兩次射擊,以該運動員兩次射擊中最高環(huán)數(shù)作為他的成績,記為.
(Ⅰ)求該運動員兩次都命中7環(huán)的概率.
(Ⅱ)求的分布列及其數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】南北朝時代的偉大科學家祖暅在數(shù)學上有突出貢獻,他在實踐的基礎上提出祖暅原理:“冪勢既同,則積不容異”. 其含義是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平行平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等.如圖,夾在兩個平行平面之間的兩個幾何體的體積分別為,被平行于這兩個平面的任意平面截得的兩個截面面積分別為,則“相等”是“總相等”的
A. 充分而不必要條件B. 必要而不充分條件
C. 充分必要條件D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某文化創(chuàng)意公司開發(fā)出一種玩具(單位:套)進行生產(chǎn)和銷售.根據(jù)以往經(jīng)驗,每月生產(chǎn)x套玩具的成本p由兩部分費用(單位:元)構成:.固定成本(與生產(chǎn)玩具套數(shù)x無關),總計一百萬元;b.生產(chǎn)所需的直接總成本.
(1)問:該公司每月生產(chǎn)玩具多少套時,可使得平均每套所需成本費用最少?此時每套玩具的成本費用是多少?
(2)假設每月生產(chǎn)出的玩具能全部售出,但隨著x的增大,生產(chǎn)所需的直接總成本在急劇增加,因此售價也需隨著x的增大而適當增加.設每套玩具的售價為q元,().若當產(chǎn)量為15000套時利潤最大,此時每套售價為300元,試求、b的值.(利潤=銷售收入-成本費用)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若不等式的解集為,求實數(shù)的值;
(2)在(1)的條件下,若存在實數(shù)使成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com