【題目】某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如表:

商店名稱

A

B

C

D

E

銷售額x/千萬元

3

5

6

7

9

利潤額y/百萬元

2

3

3

4

5


(1)畫出銷售額和利潤額的散點圖;
(2)若銷售額和利潤額具有相關(guān)關(guān)系,用最小二乘法計算利潤額y對銷售額x的回歸直線方程;
(3)據(jù)(2)的結(jié)果估計當銷售額為1億元時的利潤額.

【答案】
(1)

解:銷售額與利潤額成線性相關(guān)關(guān)系


(2)

解:由已知數(shù)據(jù)計算得: =6, =3.4,

b= =0.5,

a=3.4﹣0.5×6=0.4

∴y對銷售額x的回歸直線方程為:

y=0.5x+0.4


(3)

解:∴當銷售額為1億元時,

將x=10代入線性回歸方程中得到y(tǒng)=5.4(千萬元).


【解析】(1)根據(jù)某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額的表中數(shù)據(jù)畫出散點圖,根據(jù)這些點分布在某直線附近判斷是否具有相關(guān)關(guān)系;(2)求出線性回歸系數(shù),可得利潤額y對銷售額x的回歸直線方程;(3)將零售店某月銷售額為10千萬元代入線性回歸方程,計算出y的值,即為此月份該零售點的估計值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且對任意x1 , x2∈(0,+∞)都有 <0(x1≠x2),若實數(shù)a滿足f(log3a1)+2f( a)≥3f(1),則a的取值范圍是(
A.[ ,3]
B.[1,3]
C.(0,
D.(0,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圓C過點A(6,4),B(1,﹣1),且圓心在直線l:x﹣5y+7=0上.
(1)求圓C的方程;
(2)P為圓C上的任意一點,定點Q(7,0),求線段PQ中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=kax﹣ax(a>0且a≠1)是定義域R上的奇函數(shù).
(1)若f(1)>0,試求不等式f(x2+2x)+f(x﹣4)>0的解集;
(2)若f(1)= ,且g(x)=a2x+a2x﹣4f(x),求g(x)在[1,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A、B、C三個箱子中各裝有2個完全相同的球,每個箱子里的球,有一個球標著號碼1,另一個球標著號碼2.現(xiàn)從A、B、C三個箱子中各摸出1個球. (I)若用數(shù)組(x,y,z)中的x、y、z分別表示從A、B、C三個箱子中摸出的球的號碼,請寫出數(shù)組(x,y,z)的所有情形,并回答一共有多少種;
(Ⅱ)如果請您猜測摸出的這三個球的號碼之和,猜中有獎.那么猜什么數(shù)獲獎的可能性最大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若an=logn+1(n+2)(n∈N),我們把使乘積a1a2…an為整數(shù)的數(shù)n叫做“劣數(shù)”,則在區(qū)間(1,2004)內(nèi)所有劣數(shù)的和為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐S﹣ABCD中,AB⊥AD,AB∥CD,CD=3AB,平面SAD⊥平面ABCD,M是線段AD上一點,AM=AB,DM=DC,SM⊥AD. (Ⅰ)證明:BM⊥平面SMC;
(Ⅱ)若SB與平面ABCD所成角為 ,N為棱SC上的動點,當二面角S﹣BM﹣N為 時,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分組的頻率分布直方圖如圖.
(1)求直方圖中x的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,[220,240),[240,260),[260,280),[280,300)的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[220,240)的用戶中應抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(ax2+bx+c)ex在[0,1]上單調(diào)遞減且滿足f(0)=1,f(1)=0.
(1)求a取值范圍;
(2)設(shè)g(x)=f(x)﹣f′(x),求g(x)在[0,1]上的最大值和最小值.

查看答案和解析>>

同步練習冊答案