7.如圖,已知半徑為1的扇形AOB,∠AOB=60°,P為弧$\widehat{AB}$上的一個(gè)動(dòng)點(diǎn),則$\overrightarrow{OP}•\overrightarrow{AB}$取值范圍是[$-\frac{1}{2}$,$\frac{1}{2}$].

分析 結(jié)合圖形,將$\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}$代入$\overrightarrow{OP}•\overrightarrow{AB}$進(jìn)行數(shù)量積的運(yùn)算,并代入∠BOP=60°-∠AOP進(jìn)行化簡(jiǎn)即可得出$\overrightarrow{OP}•\overrightarrow{AB}=sin(∠AOP-30°)$,這樣,根據(jù)0°≤∠AOP≤60°即可求出sin(∠AOP-30°)的范圍,即求出$\overrightarrow{OP}•\overrightarrow{AB}$的取值范圍.

解答 解:$\overrightarrow{OP}•\overrightarrow{AB}=\overrightarrow{OP}•(\overrightarrow{OB}-\overrightarrow{OA})$
=$\overrightarrow{OP}•\overrightarrow{OB}-\overrightarrow{OP}•\overrightarrow{OA}$
=cos∠BOP-cos∠AOP
=cos(60°-∠AOP)-cos∠AOP
=$\frac{1}{2}cos∠AOP+\frac{\sqrt{3}}{2}sin∠AOP-cos∠AOP$
=$\frac{\sqrt{3}}{2}sin∠AOP-\frac{1}{2}cos∠AOP$
=sin(∠AOP-30°);
0°≤∠AOP≤60°;
∴-30°≤∠AOP-30°≤30°;
∴$-\frac{1}{2}≤sin(∠AOP-30°)≤\frac{1}{2}$;
∴$\overrightarrow{OP}•\overrightarrow{AB}$的取值范圍為$[-\frac{1}{2},\frac{1}{2}]$.
故答案為:[$-\frac{1}{2},\frac{1}{2}$].

點(diǎn)評(píng) 考查向量減法的幾何意義,向量數(shù)量積的運(yùn)算及計(jì)算公式,兩角和差的正余弦公式,以及不等式的性質(zhì),熟悉正弦函數(shù)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如果實(shí)數(shù)x,y滿足關(guān)系$\left\{\begin{array}{l}x-y+1≥0\\ x+y-2≤0\\ x≥0\\ y≥0\end{array}\right.$,又$\frac{2x+y-7}{x-3}≤c$恒成立,則c的取值范圍為( 。
A.[$\frac{9}{5}$,3]B.(-∞,3]C.[3,+∞)D.(2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.(1)解不等式:3≤x2-2x<8;
(2)已知a,b,c,d均為實(shí)數(shù),求證:(a2+b2)(c2+d2)≥(ac+bd)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知△ABC中,AC=1,$∠ABC=\frac{2π}{3}$,設(shè)∠BAC=x,記$f(x)=\overrightarrow{AB}•\overrightarrow{BC}$;
(1)求函數(shù)f(x)的解析式及定義域;
(2)試寫(xiě)出函數(shù)f(x)的單調(diào)遞增區(qū)間,并求方程$f(x)=\frac{1}{6}$的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)$f(x)=\sqrt{x}+1$的反函數(shù)是f-1(x)=(x-1)2(x≥1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在Rt△AOB中,$∠OAB=\frac{π}{6}$,斜邊AB=4,D是AB中點(diǎn),現(xiàn)將Rt△AOB以
直角邊AO為軸旋轉(zhuǎn)一周得到一個(gè)圓錐,點(diǎn)C為圓錐底面圓周上一點(diǎn),且∠BOC=90°,
(1)求圓錐的側(cè)面積;
(2)求直線CD與平面BOC所成的角的大。唬ㄓ梅慈呛瘮(shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知a,b∈R,則“ab>0“是“$\frac{a}$+$\frac{a}$>2”的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)集合P={x|0≤x≤4},Q={y|0≤y≤4},能表示集合P到集合Q的函數(shù)關(guān)系的有( 。
A.①②③④B.①②③C.②③D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知圓O:x2+y2=r2(r>0),直線l:y=x+1.若圓O上恰有兩個(gè)點(diǎn)到直線的距離是1,則r的取值范圍是1$-\frac{\sqrt{2}}{2}$<r<1+$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案