【題目】已知函數(shù).

(1)討論的單調(diào)區(qū)間;

(2)當時,證明: .

【答案】(1)詳見解析;(2)詳見解析.

【解析】試題分析:(1)求函數(shù)的單調(diào)區(qū)間,先求導(dǎo),于導(dǎo)數(shù)可知導(dǎo)數(shù)的符號受參數(shù)的取值的影響,根據(jù), ,分析即可,(2)要證,問題轉(zhuǎn)化為,然后構(gòu)造函數(shù),只需證明是增函數(shù)即可

試題解析:

解:(1)的定義域為,且,

①當時, ,此時的單調(diào)遞減區(qū)間為.

②當時,由,得;

,得.

此時的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.

③當時,由,得;

,得.

此時的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.

(2)當時,要證: ,

只要證: ,即證: .(*)

設(shè),則,

設(shè)

由(1)知上單調(diào)遞增,

所以當時, ,于是,所以上單調(diào)遞增,

所以當時,(*)式成立,

故當時, .

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點

(Ⅰ)求橢圓的方程;

(Ⅱ)已知橢圓的左焦點為直線與橢圓交于不同兩點,都在軸上方),

(。┤,求的面積;

(ⅱ)直線是否恒過定點?若過定點,求出該定點的坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱柱中,底面,底面是梯形,,,.

(1)求證:平面平面;

(2)在線段上是否存在一點,使平面,若存在,請確定點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年新高一學(xué)生入學(xué)后,為了了解新生學(xué)業(yè)水平,某區(qū)對新生進行了素質(zhì)測查,隨機抽取了50名學(xué)生的數(shù)學(xué)成績(均低于100分),其相關(guān)數(shù)據(jù)統(tǒng)計如下:

分數(shù)段

頻數(shù)

選擇題24分

5

2

10

4

15

12

10

6

5

4

5

5

(1)若全區(qū)高一新生有5000人,試估計成績不低于60的人數(shù);

(2)根據(jù)表格數(shù)據(jù)試估計全區(qū)新生數(shù)學(xué)的平均成績(同一分數(shù)段的數(shù)據(jù)取該區(qū)間的中點值作為代表,如區(qū)間的中點值為75);

(3)從成績在中抽取選擇題得分不低于24分的3名學(xué)生進行具體分析,求至少有2學(xué)生成績在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y= ﹣(x+1)0的定義域為(
A.(﹣1, ]
B.(﹣1, )??
C.(﹣∞,﹣1)∪(﹣1, ]
D.[ ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(0,1)且與x軸有唯一的交點(﹣1,0). (Ⅰ)求f(x)的表達式;
(Ⅱ)在(Ⅰ)的條件下,設(shè)函數(shù)F(x)=f(x)﹣mx,若F(x)在區(qū)間[﹣2,2]上是單調(diào)函數(shù),求實數(shù)m的取值范圍;
(Ⅲ)設(shè)函數(shù)g(x)=f(x)﹣kx,x∈[﹣2,2],記此函數(shù)的最小值為h(k),求h(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表提供了某廠節(jié)油降耗技術(shù)發(fā)行后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量 x ()與相應(yīng)的生產(chǎn)能耗y(噸標準)的幾組對應(yīng)數(shù)據(jù).

x

3

4

5

6

y

2.5

3

4

4.5

1請畫出上表數(shù)據(jù)的散點圖;

2請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出 y 關(guān)于 x 的線性回歸方程

3已知該廠技改前 100 噸甲產(chǎn)品的生產(chǎn)能耗為 90 噸標準煤,試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)100 噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?(參考數(shù)值3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求a的取值范圍
(3)若x∈[t,t+2],試求y=f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)G為△ABC的重心,過G作直線l分別交線段AB,AC(不與端點重合)于P,Q.若 ,

(1)求 的值;
(2)求λμ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案