二項(xiàng)式(2x+
1
x
6展開式中的常數(shù)項(xiàng)是( 。
A、15B、60
C、120D、240
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:在二項(xiàng)展開式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng),
解答: 解:二項(xiàng)式(2x+
1
x
6展開式的通項(xiàng)公式為Tr+1=
C
r
6
•(2x)6-r•(
x
-r=26-r
C
r
6
x 
12-3r
2
,
令12-3r=0,求得r=4,
故展開式中的常數(shù)項(xiàng)為 26-4
C
4
6
=60,
故選:B.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α為第三象限角,sinα=-
3
5
,則sin2α+cos2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面直角坐標(biāo)系內(nèi)的兩個(gè)向量
a
=(1,2),
b
=(m,3m-2),且平面內(nèi)的任一向量
c
都可以唯一表示成
c
=λ
a
-μ
b
(λ,μ為實(shí)數(shù)),則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且a1+a3=
5
2
,a2+a4=
5
4
,則
Sn
an
=( 。
A、4n-1
B、4n-1
C、2n-1
D、2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的程序框圖,如果輸入m=225,n=135,那么輸出的值為( 。
A、45B、5C、15D、90

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若正實(shí)數(shù)x,y滿足x+y+1=xy,則x+2y的最小值是( 。
A、3B、5C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z1=2+i,z2=a-i,z1•z2是實(shí)數(shù),則實(shí)數(shù)a=(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線C:
x2
a2
-
y2
3
=1(a>0)的一個(gè)頂點(diǎn)坐標(biāo)為(2,0),則雙曲線C的方程是(  )
A、
x2
16
-
y2
3
=1
B、
x2
12
-
y2
3
=1
C、
x2
8
-
y2
3
=1
D、
x2
4
-
y2
3
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),若存在x0∈R,使得f(x0)=x0成立,則稱x0為f(x)的不動(dòng)點(diǎn).已知二次函數(shù)f(x)=ax2+bx+c(a>0),滿足
f(0)≥1
f(1+sinα)≤1(α∈R)
,且f(x)有兩個(gè)不動(dòng)點(diǎn)x1,x2,記函數(shù)f(x)的對(duì)稱軸為x=x0,求證:如果x1<2<x2<4,那么x0>-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案