已知α為第三象限角,sinα=-
3
5
,則sin2α+cos2α=
 
考點:二倍角的正弦,二倍角的余弦
專題:三角函數(shù)的求值
分析:由題意利用同角三角函數(shù)的基本關系求得cosα,再利用二倍角公式求得sin2α和cos2α,即可求得sin2α+cos2α 的值.
解答: 解:∵α為第三象限角,sinα=-
3
5
,∴cosα=-
4
5
,sin2α=2sinαcosα=
24
25
,cos2α=2cos2α-1=
7
25

∴sin2α+cos2α=
31
25
,
故答案為:
31
25
點評:本題主要考查同角三角函數(shù)的基本關系、二倍角公式的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,設拋物線C1y2=4mx(m>0)的準線與x軸交于F1,且C1的焦 點為F2;以F1,F(xiàn)2為焦點,離心率e=
1
2
的橢圓C2與拋物線C1在x軸上方的一個交點為P.
(Ⅰ)是否存在實數(shù)m,使得△PF1F2的邊長是連續(xù)的自然數(shù),若存在,求出這樣的實數(shù)m,若不存在,請說明理由;
(Ⅱ)若m=1,直線l經(jīng)過橢圓C2的右焦點F2,且與拋物線C1交于A1,A2,以線段A1A2為直徑作圓,若圓經(jīng)過點P,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)在(0,+∞)上為減函數(shù),且f(x)<0(x>0),試判斷f(x)=
1
f(x)
在(0,+∞)上的單調(diào)性,并給出證明過程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

畫出y=
1
2
x2-4x+10的圖象,由圖象你能發(fā)現(xiàn)這個函數(shù)具有什么性質(zhì)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題:“存在x∈[1,2],使x2+2x+a≥0”為真命題,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|≤
π
2
)與坐標軸的三個交點P、Q、R滿足P(2,0),∠PQR=
π
4
,M為QR的中點,PM=2
5
,則A的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若方程x2+2x+m=0有實根,-mx2+2x+1=0無實根,則m∈
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式x2-ax+2>0對任意實數(shù)x∈[2,3]恒成立,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二項式(2x+
1
x
6展開式中的常數(shù)項是( 。
A、15B、60
C、120D、240

查看答案和解析>>

同步練習冊答案