6.${({\frac{2+2i}{1-i}})^3}$=( 。
A.8B.-8C.8iD.-8i

分析 直接由復數(shù)代數(shù)形式的乘法運算化簡復數(shù)$\frac{2+2i}{1-i}$得答案.

解答 解:$\frac{2+2i}{1-i}=\frac{(2+2i)(1+i)}{(1-i)(1+i)}=\frac{4i}{2}=2i$,
則${({\frac{2+2i}{1-i}})^3}$=(2i)3=-8i.
故選:D.

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.從2013名學生中選取50名學生參加數(shù)學競賽,若采用下面的方法選取:先用簡單隨機抽樣從2013人中剔除13人,剩下的2000人再按系統(tǒng)抽樣的方法抽取50人,則在2013人中,每人入選的機會( 。
A.不全相等B.均不相等
C.都相等,且為$\frac{1}{40}$D.都相等,且為 $\frac{50}{2013}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設a,b∈R,則“$\frac{1}{a}>\frac{1}$”是“a<b<0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知f(3x)=xlg9,則f(2)+f(5)=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知數(shù)列{an}是等差數(shù)列,其前n項和為Sn,若S2017=4034,則a3+a1009+a2015=( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在平面直角坐標系中,已知△PAB的周長為8,且點A,B的坐標分別為(-1,0),(1,0).
(Ⅰ)試求頂點P的軌跡C1的方程;
(Ⅱ)若動點P1(x1,y1)在曲線C1上,試求動點$Q(\frac{x_1}{3},\frac{y_1}{{2\sqrt{2}}})$的軌跡C2的方程;
(Ⅲ)過點C(3,0)作直線l與曲線C2相交于M,N兩點,試探究是否存在直線l,使得點N恰好是線段CM的中點.若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若a=20.5,b=logπ3,c=log20.9,則( 。
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)y=x2-ln|x|在[-2,2]的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,在四棱錐O-ABCD中,底面ABCD是邊長為1的菱形,∠ABC=$\frac{π}{4}$,OA⊥底面ABCD,OA=2,M為OA的中點,N為BC的中點.
(1)證明:直線MN∥平面OCD.
(2)求三棱錐N-CDM的體積.

查看答案和解析>>

同步練習冊答案