解:(1)∵平面A'C'∥平面AC
∴平面A'BC'與平面A'C'成的角即為平面A'B'C與平面AC成的角,
連接B'D'交A'C'于O',連接BO'
∵BB'⊥平面A'C',B'D'⊥A'C'
∴BO'⊥A'C'
∠BO'B'即為二面角B-A'C'-B'的平面角,
,BB'=2
∴
∴∠BO'B'=
∴平面A'BC'與平面ABCD成的二面角為
.
(2)連接BD交AC于O,連接B'D交BO'與H,取BH 的中點N,連接ON
易證:B'D⊥平面A'BC',ON∥DB',∴ON⊥平面A'BC'
AC∥A'C'AC∥平面A'BC'
點O到平面A'BC'的距離即為AC到平面A'BC'的距離
∴直線AC到平面A'BC'的距離為
分析:(1)平面A'C'∥平面AC,平面A'BC'與平面A'C'成的角即為平面A'B'C與平面AC成的角,連接B'D'交A'C'于O',連接BO'則可證明∠BO'B'即為二面角B-A'C'-B'的平面角,在△BO'B'中求解.
(2)連接BD交AC于O,連接B'D交BO'與H,取BH 的中點N,連接ON,說明點O到平面A'BC'的距離即為AC到平面A'BC'的距離,求解即可.
點評:本題主要以正方體為載體,考查空間線面關(guān)系、二面角的度量、幾何體的體積等知識,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運算求解能力.掌握正方體的一些幾何性質(zhì),能為解題提供有益的幫助與思路引領(lǐng),本題中B'D⊥平面A'BC'是重要的一個步驟.