【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,取相同的單位長度建立極坐標系,直線的極坐標方程為,曲線的參數(shù)方程為(為參數(shù)).
(Ⅰ)求直線的直角坐標方程和曲線的普通方程;
(Ⅱ)求曲線上的動點到直線距離的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】直線l過拋物線C:y2=4x的焦點F且與C交于A(x1,y1),B(x2,y2)兩點,則y1y2=_____.過A,B兩點分別作拋物線C的準線的垂線,垂足分別為P,Q,準線與x軸的交點為M,四邊形FAPM的面積記為S1,四邊形FBQM的面積記為S2,則S1S2﹣3|AF||BF|=_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年1月3日嫦娥四號探測器成功實現(xiàn)人類歷史上首次月球背面軟著陸,我國航天事業(yè)取得又一重大成就,實現(xiàn)月球背面軟著陸需要解決的一個關(guān)鍵技術(shù)問題是地面與探測器的通訊聯(lián)系.為解決這個問題,發(fā)射了嫦娥四號中繼星“鵲橋”,鵲橋沿著圍繞地月拉格朗日點的軌道運行.點是平衡點,位于地月連線的延長線上.設(shè)地球質(zhì)量為M1,月球質(zhì)量為M2,地月距離為R,點到月球的距離為r,根據(jù)牛頓運動定律和萬有引力定律,r滿足方程:
.
設(shè),由于的值很小,因此在近似計算中,則r的近似值為
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“雜交水稻之父”袁隆平一生致力于雜交水稻技術(shù)的研究、應(yīng)用與推廣,發(fā)明了“三系法”秈型雜交水稻,成功研究出“兩系法”雜交水稻,創(chuàng)建了超級雜交稻技術(shù)體系,為我國糧食安全、農(nóng)業(yè)科學發(fā)展和世界糧食供給做出了杰出貢獻;某雜交水稻種植研究所調(diào)查某地水稻的株高,得出株高(單位:cm)服從正態(tài)分布,其密度曲線函數(shù)為,則下列說法正確的是( )
A.該地水稻的平均株高為100cm
B.該地水稻株高的方差為10
C.隨機測量一株水稻,其株高在120cm以上的概率比株高在70cm以下的概率大
D.隨機測量一株水稻,其株高在(80,90)和在(100,110)(單位:cm)的概率一樣大
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線,設(shè)直線經(jīng)過點且與拋物線相交于兩點,拋物線在、兩點處的切線相交于點,直線,分別與軸交于、兩點.
(1)求點的軌跡方程
(2)當點不在軸上時,記的面積為,的面積為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,為自然對數(shù)的底數(shù).
(Ⅰ)若為單調(diào)遞增函數(shù),求實數(shù)的取值范圍;
(Ⅱ)當存在極小值時,設(shè)極小值點為,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】湖北七市州高三5月23日聯(lián)考后,從全體考生中隨機抽取44名,獲取他們本次考試的數(shù)學成績和物理成績,繪制成如圖散點圖:
根據(jù)散點圖可以看出與之間有線性相關(guān)關(guān)系,但圖中有兩個異常點.經(jīng)調(diào)查得知,考生由于重感冒導致物理考試發(fā)揮失常,考生因故未能參加物理考試.為了使分析結(jié)果更科學準確,剔除這兩組數(shù)據(jù)后,對剩下的數(shù)據(jù)作處理,得到一些統(tǒng)計的值:其中,分別表示這42名同學的數(shù)學成績、物理成績,,2,…,42,與的相關(guān)系數(shù).
(1)若不剔除兩名考生的數(shù)據(jù),用44組數(shù)據(jù)作回歸分析,設(shè)此時與的相關(guān)系數(shù)為.試判斷與的大小關(guān)系,并說明理由;
(2)求關(guān)于的線性回歸方程,并估計如果考生參加了這次物理考試(已知考生的數(shù)學成績?yōu)?/span>125分),物理成績是多少?
(3)從概率統(tǒng)計規(guī)律看,本次考試七市州的物理成績服從正態(tài)分布,以剔除后的物理成績作為樣本,用樣本平均數(shù)作為的估計值,用樣本方差作為的估計值.試求七市州共50000名考生中,物理成績位于區(qū)間(62.8,85.2)的人數(shù)的數(shù)學期望.
附:①回歸方程中:
②若,則
③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以坐標原點O為極點,軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程為:,曲線C2的參數(shù)方程為:,點N的極坐標為.
(Ⅰ)若M是曲線C1上的動點,求M到定點N的距離的最小值;
(Ⅱ)若曲線C1與曲線C2有有兩個不同交點,求正數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com