【題目】已知函數(shù)f(x)=sin(x﹣ )cos(x﹣ )(x∈R),則下面結論錯誤的是( )
A.函數(shù)f(x)的圖象關于點(﹣ ,0)對稱
B.函數(shù)f(x)的圖象關于直線x=﹣ 對稱
C.函數(shù)f(x)在區(qū)間[0, ]上是增函數(shù)
D.函數(shù)f(x)的圖象是由函數(shù)y= sin2x的圖象向右平移 個單位而得到
【答案】A
【解析】解:∵函數(shù)f(x)=sin(x﹣ )cos(x﹣ )= sin(2x﹣ ),令x=﹣ ,可得2x﹣ =﹣ ,f(x)≠0,
故函數(shù)f(x)的圖象不關于點(﹣ ,0)對稱,故A錯誤.
令x=﹣ ,可得2x﹣ =﹣ ,f(x)=0,故函數(shù)f(x)的圖象關于點(﹣ ,0)對稱,故B正確.
令x∈[0, ],可得2x﹣ ∈[﹣ , ],故函數(shù)f(x)在區(qū)間[0, ]上是增函數(shù),故C正確.
把函數(shù)y= sin2x的圖象向右平移 個單位,可得y= sin(2x﹣ ) 的圖象,故D正確,
故選:A.
【考點精析】關于本題考查的函數(shù)y=Asin(ωx+φ)的圖象變換,需要了解圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】某同學使用計算器求30個數(shù)據(jù)的平均數(shù)時,錯將其中一個數(shù)據(jù)105輸入為15,那么由此求出的平均數(shù)與實際平均數(shù)的差是( )
A.35
B.﹣3
C.3
D.﹣0.5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】運貨卡車以每小時x千米的速度勻速行駛130千米(50≤x≤100)(單位:千米/小時).假設汽油的價格是每升2元,而汽車每小時耗油(2+ )升,司機的工資是每小時14元.
(1)求這次行車總費用y關于x的表達式;
(2)當x為何值時,這次行車的總費用最低,并求出最低費用的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【廣西名校2017屆高三上學期第一次摸底】如圖,過拋物線上一點,作兩條直線分別交拋物線于,,
當與的斜率存在且傾斜角互補時:
(Ⅰ)求的值;
(Ⅱ)若直線在軸上的截距時,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點P(x、y)滿足
(1)若x∈{0,1,2,3,4,5},y∈{0,1,2,3,4},則求y≥x的概率.
(2)若x∈[0,5],y∈[0,4],則求x>y的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為橢圓的左右焦點,點為其上一點,且有.
(1)求橢圓的標準方程;
(2)過的直線與橢圓交于兩點,過與平行的直線與橢圓交于兩點,求四邊形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖甲所示, 是梯形的高, , , ,現(xiàn)將梯形沿折起如圖乙所示的四棱錐,使得,點是線段上一動點.
(1)證明: 和不可能垂直;
(2)當時,求與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com