某所學(xué)校計(jì)劃招聘男教師x名,女教師y名,x和y須滿足約束條件
2x-y≥5
x-y≤2
x≤5
,則該校招聘的教師最多是
 
名.
考點(diǎn):簡單線性規(guī)劃
專題:數(shù)形結(jié)合法
分析:由題意由于某所學(xué)校計(jì)劃招聘男教師x名,女教師y名,且x和y須滿足約束條件
2x-y≥5
x-y≤2
x≤5
,又不等式組畫出可行域,又要求該校招聘的教師人數(shù)最多令z=x+y,在可行域內(nèi)使得z取得最大.
解答: 解:由于某所學(xué)校計(jì)劃招聘男教師x名,女教師y名,且x和y須滿足約束條件
2x-y≥5
x-y≤2
x≤5
,畫出可行域?yàn)椋?br />
對(duì)于需要求該校招聘的教師人數(shù)最多,令z=x+y?y=-x+z 則題意轉(zhuǎn)化為,在可行域內(nèi)任意去x,y且為整數(shù)使得目標(biāo)函數(shù)代表的斜率為定值-1,截距最大時(shí)的直線為過
x=5
2x-y-5=0
⇒(5,5)時(shí)使得目標(biāo)函數(shù)取得最大值為:z=10.
故答案為:10.
點(diǎn)評(píng):本題考查了線性規(guī)劃的應(yīng)用,還考查了學(xué)生的數(shù)形結(jié)合的求解問題的思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為∠A,∠B,∠C所對(duì)的邊,且cosA=
4
5
sinB
sinA
=
b
2
,則△ABC的面積S的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-1,a為一個(gè)正常數(shù),且f[f(-1)]=-1,則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,過點(diǎn)(3,
π
3
)且垂直于極軸的直線方程的極坐標(biāo)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x)且x∈(-1,1]時(shí),f(x)=1-x2,函數(shù)g(x)=
lg|x|,x≠0
1,x=0
,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,9]內(nèi)的零點(diǎn)的個(gè)數(shù)為
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m、n是兩條不同的直線,α、β是兩個(gè)不平的平面,下列命題中正確的是( 。
A、若α⊥β,α∩β=n,m⊥n,則m⊥α
B、若α∥β,m∥α,n∥β,則m∥n
C、若α⊥β,m?α,n?β,m⊥n,則m⊥β
D、若α⊥β,m⊥α,m∥n,n?β,則n∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(3,4),
b
=(-2,1),若(
a
+x
b
)⊥
b
,則實(shí)數(shù)x為( 。
A、-
1
5
B、-
2
5
C、
1
5
D、
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
e1
,
e2
為單位向量,且滿足(2
e1
+
e2
)•
e2
=0,則<
e1
,
e2
>=(  )
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)F為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦點(diǎn),過F的直線l交雙曲線右支于點(diǎn)E,若圓x2+y2=
a2
4
上一點(diǎn)P滿足
OF
+
OE
=2
OP
,且∠FOP為銳角,則該雙曲線的離心率的取值范圍為( 。
A、(
2
,2)
B、(
2
10
2
C、(
10
2
,2)
D、(
10
2
,+∞)

查看答案和解析>>

同步練習(xí)冊答案