【題目】201971日,《上海市生活垃圾管理?xiàng)l例》正式實(shí)施,生活垃圾要按照可回收物、有害垃圾濕垃圾、干垃圾的分類標(biāo)準(zhǔn)進(jìn)行分類,沒有垃圾分類和未投放到指定垃圾桶內(nèi)等會(huì)被罰款和行政處罰.若某上海居民提著廚房里產(chǎn)生的濕垃圾隨意地投放到樓下的垃圾桶,若樓下分別放有可回收物、有害垃圾、濕垃圾干垃圾四個(gè)垃圾桶,則該居民會(huì)被罰款和行政處罰的概率為(

A.B.C.D.

【答案】D

【解析】

所有基本事件個(gè)數(shù)為4,設(shè)事件為居民沒有垃圾分類和未投放到指定垃圾桶內(nèi),則事件個(gè)數(shù)為3個(gè),從而得出該居民會(huì)被罰款和行政處罰的概率.

廚房里產(chǎn)生的濕垃圾只能丟到放濕垃圾的垃圾桶,

該上海居民向四種垃圾桶內(nèi)隨意的丟垃圾,有4種可能,投放錯(cuò)誤有3種結(jié)果,

故會(huì)被罰款和行政處罰的概率為.

故選:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)=lnx+ax2+(2a+1)x

(1)討論的單調(diào)性;

(2)當(dāng)a﹤0時(shí),證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年全國(guó)掀起了垃圾分類的熱潮,垃圾分類已經(jīng)成為新時(shí)尚,同時(shí)帶動(dòng)了垃圾桶的銷售.某垃圾桶生產(chǎn)和銷售公司通過數(shù)據(jù)分析,得到如下規(guī)律:每月生產(chǎn)只垃圾桶的總成本由固定成本和生產(chǎn)成本組成,其中固定成本為100萬元,生產(chǎn)成本為.

1)寫出平均每只垃圾桶所需成本關(guān)于的函數(shù)解析式,并求該公司每月生產(chǎn)多少只垃圾桶時(shí),可使得平均每只所需成本費(fèi)用最少?

2)假設(shè)該類型垃圾桶產(chǎn)銷平衡(即生產(chǎn)的垃圾桶都能賣掉),每只垃圾桶的售價(jià)為元,滿足.若當(dāng)產(chǎn)量為15000只時(shí)利潤(rùn)最大,此時(shí)每只售價(jià)為300元,試求的值.(利潤(rùn)銷售收入成本費(fèi)用)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)時(shí),若函數(shù)恰有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

2當(dāng), 時(shí),對(duì)任意,有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:

是否需要志愿 性別

需要

40

30

不需要

160

270

1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;

2)能否有99%的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?

3)根據(jù)(2)的結(jié)論,能否提供更好的調(diào)查方法來估計(jì)該地區(qū)老年人中,需要志愿幫助的老年人的比例?說明理由.

P

0.0

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C:(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,P為雙曲線C上的一點(diǎn),線段PF1與y軸的交點(diǎn)M恰好是線段PF1的中點(diǎn),,其中O為坐標(biāo)原點(diǎn),則雙曲線C的漸近線的斜率與離心率分別是( )

A. ±1, B. 1, C. ±2, D. 2,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)求函數(shù)的單調(diào)減區(qū)間;

2)若函數(shù)在區(qū)間上的極大值為8,求在區(qū)間上的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,過點(diǎn)P(0,1)且互相垂直的兩條直線分別與圓O:交于點(diǎn)A,B,與圓M:(x﹣2)2+(y﹣1)2=1交于點(diǎn)C,D.

(1)若AB=,求CD的長(zhǎng);

(2)若CD中點(diǎn)為E,求△ABE面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案