【題目】四棱柱中,側(cè)棱底面,底面為菱形,,

.的中點(diǎn),相交于點(diǎn).

(1)求證:平面 平面;

(2)求二面角的余弦值.

【答案】(1)見證明;(2)

【解析】

(1)根據(jù)已知條件證明平面,然后利用面面垂直的判定定理即可得到證明;(2)取中點(diǎn),以射線,的方向作為,,軸的正方向建立空間直角坐標(biāo)系,求平面和平面的法向量,根據(jù)向量數(shù)量積求法向量夾角,最后根據(jù)二面角與向量夾角關(guān)系得結(jié)果.

(1)證明:連接.因?yàn)?/span>,的中點(diǎn),所以.

,所以平面,所以.

中,,,所以.

在矩形中,,中點(diǎn),所以.

所以平面,即平面.

平面,所以平面平面.

(2)解:取中點(diǎn),以射線,,的方向作為,軸的正方向建立空間直角坐標(biāo)系(如圖),

,,.

,.

設(shè)平面的一個(gè)法向量為,則由

,則.

設(shè)平面的一個(gè)法向量為,則由

,則

.

所以二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】6支鋼筆中有4支為正品,2支為次品,現(xiàn)需要通過檢測(cè)將其進(jìn)行區(qū)分,每次隨機(jī)抽出一支鋼筆進(jìn)行檢測(cè),檢測(cè)后不放回,直到完全將正品和次品區(qū)分開,用表示直到檢測(cè)結(jié)束時(shí)檢測(cè)進(jìn)行的次數(shù),則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列,滿足,數(shù)列滿足, ,且是等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(Ⅰ)當(dāng)曲線在點(diǎn)處的切線與直線垂直時(shí),求的值;

(Ⅱ)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為.現(xiàn)以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).

1)求曲線的直角坐標(biāo)系方程和直線的普通方程;

2)點(diǎn)在曲線上,且到直線的距離為,求符合條件的點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的有_______.

①回歸直線恒過點(diǎn),且至少過一個(gè)樣本點(diǎn);

②根據(jù)列列聯(lián)表中的數(shù)據(jù)計(jì)算得出,而,則有99%的把握認(rèn)為兩個(gè)分類變量有關(guān)系;

是用來判斷兩個(gè)分類變量是否相關(guān)的隨機(jī)變量,當(dāng)的值很小時(shí)可以推斷兩個(gè)變量不相關(guān);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知相交于點(diǎn),線段是圓的一條動(dòng)弦,且,則的最小值是___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)n 為不小于3的正整數(shù),集合,對(duì)于集合中的任意元素,

(Ⅰ)當(dāng)時(shí),若,請(qǐng)寫出滿足的所有元素

(Ⅱ)設(shè),求的最大值和最小值;

(Ⅲ)設(shè)S是的子集,且滿足:對(duì)于S中的任意兩個(gè)不同元素,有成立,求集合S中元素個(gè)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的側(cè)面是平行四邊形,,平面平面,且分別是的中點(diǎn).

(Ⅰ)求證:;

(Ⅱ)求證:平面;

(Ⅲ)在線段上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案