【題目】已知函數(shù)的最小正周期為4,其圖象關(guān)于直線對(duì)稱,給出下面四個(gè)結(jié)論:
①函數(shù)在區(qū)間上先增后減;②將函數(shù)的圖象向右平移個(gè)單位后得到的圖象關(guān)于原點(diǎn)對(duì)稱;③點(diǎn)是函數(shù)圖象的一個(gè)對(duì)稱中心;④函數(shù)在上的最大值為1.其中正確的是( )
A. ①② B. ③④ C. ①③ D. ②④
【答案】C
【解析】
根據(jù)最小正周期為4π,其圖象關(guān)于直線對(duì)稱,求解f(x)的解析式,即可判斷下面各結(jié)論.
函數(shù)的最小正周期為4π,可得.
∴ω
其圖象關(guān)于直線對(duì)稱.
即φ,
可得:φ,k∈Z.
∵.
∴φ.
∴f(x)的解析式為f(x)=2sin();
對(duì)于①:令,k∈Z.
可得:.
∴[0,]是單調(diào)遞增,
令,k∈Z.
可得:4kπ.
∴[,]是單調(diào)遞減,
∴函數(shù)f(x)在區(qū)間上先增后減;
對(duì)于②:將函數(shù)f(x)的圖象向右平移個(gè)單位后得到:y=2sin()=2sin(x)沒有關(guān)于原點(diǎn)對(duì)稱;
對(duì)于③:令x,可得f()=2sin()=0,∴點(diǎn)是函數(shù)f(x)圖象的一個(gè)對(duì)稱中心;
對(duì)于④:由x∈[π,2π]上,∴∈[,],所以當(dāng)x=π時(shí)取得最大值為.
∴正確的是:①③.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面平面,,,,為的中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)若線段上的點(diǎn)滿足,求棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程:在平面直角坐標(biāo)系中,曲線:(為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn)、軸的正半軸為極軸,且與平面直角坐標(biāo)系取相同單位長度的極坐標(biāo)系中,曲線:.
(1)求曲線的普通方程以及曲線的平面直角坐標(biāo)方程;
(2)若曲線上恰好存在三個(gè)不同的點(diǎn)到曲線的距離相等,求這三個(gè)點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一袋中裝有形狀、大小都相同的6只小球,其中有3只紅球、2只黃球和1只藍(lán)球.若從中1次隨機(jī)摸出2只球,則1只紅球和1只黃球的概率為__________,2只球顏色相同的概率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是我國古代數(shù)學(xué)家趙爽在為《周髀算經(jīng)》作注解時(shí)給出的“弦圖”.現(xiàn)提供4種顏色給“弦圖”的5個(gè)區(qū)域涂色,規(guī)定每個(gè)區(qū)域只涂一種顏色,相鄰區(qū)域顏色不相同,則不同的涂色方案共有( 。
A.48種B.72種C.96種D.144種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以下三視圖中有三個(gè)同時(shí)表示某一個(gè)三棱錐,則不是該三棱錐的三視圖是 ( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】Fibonacci數(shù)列又稱黃金分割數(shù)列,因?yàn)楫?dāng)n趨向于無窮大時(shí),其相鄰兩項(xiàng)中的前項(xiàng)與后項(xiàng)的比值越來越接近黃金分割數(shù).已知Fibonacci數(shù)列的遞推關(guān)系式為.
(1)證明:Fibonacci數(shù)列中任意相鄰三項(xiàng)不可能成等比數(shù)列;
(2)Fibonacci數(shù)列{an}的偶數(shù)項(xiàng)依次構(gòu)成一個(gè)新數(shù)列,記為{bn},證明:{bn+1-H2·bn}為等比數(shù)列.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com