【題目】已知三棱錐A﹣BCD中,AB=CD,且直線AB與CD成60°角,點M、N分別是BC、AD的中點,求直線AB和MN所成的角.

【答案】解:如圖,取AC的中點P,連結(jié)PM、PN,
則PM∥AB,且PM=AB,PN∥CD,且PN=CD,
∴∠MPN為AB與CD所成的角(或所成的角的補角),
∴∠MPN=60°或∠MPN=120°,
若∠MPN=60°,∵PM∥AB,∴∠PMN是AB與MN所成的角(或所成角的補角),
又∵AB=CD,∴PM=PN《
∴△PMN是等邊三角形,∴∠PMN=60°,
∴AB與MN所成的角為60°;
若∠MPN=120°,則△PMN是等腰三角形,∴∠PMN=30°,
∴AB與MN所成的角為30°,
∴直線AB與MN所成的角為60°或30°.

【解析】取AC的中點P,連結(jié)PM、PN,則∠MPN為AB與CD所成的角(或所成的角的補角),∠PMN是AB與MN所成的角(或所成角的補角),由此能求出直線AB與MN所成的角.
【考點精析】解答此題的關(guān)鍵在于理解異面直線及其所成的角的相關(guān)知識,掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= , 若對任意給定的t∈(1,+∞),都存在唯一的x∈R,滿足f(f(x))=2at2+at,則正實數(shù)a的最小值是( 。
A.1
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,圓

1)過點的圓的切線只有一條,求的值及切線方程;

2)若過點且在兩坐標(biāo)軸上截距相等的直線被圓截得的弦長為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, , ,斜率為的直線過點,且和以為圓相切.

(1)求圓的方程;

(2)在圓上是否存在點,使得,若存在,求出所有的點的坐標(biāo);若不存在說明理由;

(3)若不過的直線與圓交于, 兩點,且滿足, , 的斜率依次為等比數(shù)列,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, 邊上的高,沿折起,使

(Ⅰ)證明:平面平面;

(Ⅱ)的中點,求與底面所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1 , 則異面直線BA1與AC1所成的角等于( 。

A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.

(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;

(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元).當(dāng)六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知指數(shù)函數(shù)f(x)=ax(a>0,a≠1).
(1)若f(x)的圖象過點(1,2),求其解析式;
(2)若 ,且不等式g(x2+x)>g(3﹣x)成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】莫數(shù)學(xué)建模興趣小組測量某移動信號塔的高度(單位: ),如圖所示,垂直放置的標(biāo)桿的高度,仰角, .

(Ⅰ)該小組已經(jīng)測得一組的值, ,請推測的值;

(Ⅱ)該小組對測得的多組數(shù)據(jù)分析后,發(fā)現(xiàn)適當(dāng)調(diào)節(jié)標(biāo)桿到信號塔的距離(單位: ),使得較大時,可以提高信號塔測量的精確度,若信號塔高度為,試問為多大時, 最大?

查看答案和解析>>

同步練習(xí)冊答案