【題目】設(shè)函數(shù)f(x)= , 若對(duì)任意給定的t∈(1,+∞),都存在唯一的x∈R,滿足f(f(x))=2at2+at,則正實(shí)數(shù)a的最小值是( 。
A.1
B.
C.
D.
【答案】C
【解析】解:∵f(x)= ,
∴當(dāng)x≤0時(shí),
f(f(x))==x;
當(dāng)0<x≤1時(shí),log2x≤0;
故f(f(x))==x;
當(dāng)x>1時(shí),
f(f(x))=log2(log2x);
故f(f(x))=;
分析函數(shù)在各段上的取值范圍可知,
若對(duì)任意給定的t∈(1,+∞),都存在唯一的x∈R,滿足f(f(x))=2at2+at,
則f(f(x))>1,
即2at2+at>1,
又∵t∈(1,+∞),a>0;
∴2a+a≥1即可,
即a≥;
故選:C.
【考點(diǎn)精析】利用函數(shù)的最值及其幾何意義對(duì)題目進(jìn)行判斷即可得到答案,需要熟知利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(小)值;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列的前項(xiàng)和為,且是和的等差中項(xiàng),等差數(shù)列滿足,.
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知面垂直于圓柱底面, 為底面直徑, 是底面圓周上異于的一點(diǎn), . 求證:
(1);
(2)求幾何體的最大體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)滿足f(x)=x2﹣2(a+2)x+a2 , g(x)=﹣x2+2(a﹣2)x﹣a2+8.設(shè)H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max(p,q)表示p,q中的較大值,min(p,q)表示p,q中的較小值),記H1(x)的最小值為A,H2(x)的最大值為B,則A﹣B=( 。
A.a2﹣2a﹣16
B.a2+2a﹣16
C.-16
D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于, 兩點(diǎn),點(diǎn)的坐標(biāo)為.當(dāng)變化時(shí),解答下列問(wèn)題:
(1)以為直徑的圓能否經(jīng)過(guò)點(diǎn)?說(shuō)明理由;
(2)過(guò), , 三點(diǎn)的圓在軸上截得的弦長(zhǎng)是否為定值?若是,則求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)若曲線在處的切線方程為.
(Ⅰ)求的值;
(Ⅱ)若對(duì)于任意,總有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若曲線上點(diǎn)處的切線過(guò)點(diǎn),求函數(shù)的單調(diào)減區(qū)間;
(Ⅱ)若函數(shù)在上無(wú)零點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2ax+2,x∈[﹣5,5]
(1)求實(shí)數(shù)a的取值范圍,使y=f(x)在定義域上是單調(diào)遞減函數(shù);
(2)用g(a)表示函數(shù)y=f(x)的最小值,求g(a)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐A﹣BCD中,AB=CD,且直線AB與CD成60°角,點(diǎn)M、N分別是BC、AD的中點(diǎn),求直線AB和MN所成的角.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com