【題目】已知公比小于1的等比數(shù)列的前項(xiàng)和為

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),若,求

【答案】(1)(2)

【解析】

試題分析:(1)設(shè)等比數(shù)列的公比為,由(舍去)(2)

試題解析: (1)設(shè)等比數(shù)列的公比為,

,,...................................2分

,解得(舍去),.......................4分

.............................6分

(2),.......................8分

,...........................9分

....................10分

,..........11分

,得...................12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)記函數(shù)的兩個(gè)零點(diǎn)分別為,且.已知,若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)),

(1)求函數(shù)單調(diào)區(qū)間;

(2)當(dāng)時(shí),

①求函數(shù)上的值域;

②求證:,其中,.(參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x|(x﹣a),a為實(shí)數(shù).

(1)若函數(shù)f(x)為奇函數(shù),求實(shí)數(shù)a的值;

(2)若函數(shù)f(x)在[0,2]為增函數(shù),求實(shí)數(shù)a的取值范圍;

(3)是否存在實(shí)數(shù)a(a<0),使得f(x)在閉區(qū)間上的最大值為2,若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的通項(xiàng)公式是an.

(1) 判斷是不是數(shù)列{an}中的一項(xiàng);

(2) 試判斷數(shù)列{an}中的項(xiàng)是否都在區(qū)間(01)內(nèi);

(3) 在區(qū)間內(nèi)有無(wú)數(shù)列{an}中的項(xiàng)?若有是第幾項(xiàng)?若沒有請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料

12月1日

12月2日

12月3日

12月4日

12月5日

溫差(°C)

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn)

1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

(2)若選取的是12月1日12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線過點(diǎn),其參數(shù)方程為為參數(shù), ),以為極點(diǎn), 軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知曲線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線處的切線方程為

(1)求的值;

(2)若對(duì)任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于定義域?yàn)?/span>的函數(shù),若同時(shí)滿足下列條件:

內(nèi)單調(diào)遞增或單調(diào)遞減;

存在區(qū)間,使上的值域?yàn)?/span>;那么把叫閉函數(shù).

1求閉函數(shù)符合條件的區(qū)間;

2判斷函數(shù)是否為閉函數(shù)?并說(shuō)明理由;

3判斷函數(shù)是否為閉函數(shù)若是閉函數(shù),求實(shí)數(shù)的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案