【題目】已知函數(shù)),

(1)求函數(shù)單調(diào)區(qū)間;

(2)當(dāng)時,

①求函數(shù)上的值域;

②求證:,其中,.(參考數(shù)據(jù)

【答案】(1)見解析;(2);②見解析.

【解析】試題分析: (1)先求導(dǎo)數(shù),再研究導(dǎo)函數(shù)符號:當(dāng)時,恒為正;當(dāng)時,有正有負(fù),根據(jù)符號規(guī)律確定單調(diào)區(qū)間,(2)①易得函數(shù)單調(diào)性:先減后增,故在極小值點(diǎn)處取最小值,最大值為兩端點(diǎn)值的較大值,②由所證不等式的結(jié)構(gòu)知,先研究數(shù)列求和:令,可得,再比較對應(yīng)項(xiàng)大。,這樣轉(zhuǎn)化為證明不等式,利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,即可證得.

試題解析:(1)∵

①當(dāng)時,單調(diào)遞增;

②當(dāng)時,令,得,即,

上單調(diào)遞減,在單調(diào)遞增.

(2)時,

①由,令,

單調(diào)遞減,單調(diào)遞增,且由,

∴值域?yàn)?/span>

②由,設(shè)項(xiàng)和,,

設(shè),

單調(diào)遞減,,∴,

,即時,,

,故原不等式成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國個人所得稅法》規(guī)定,公民全月工資所得不超過3500元的部分不必納稅,超過3500元的部分為全月應(yīng)納稅所得額。此項(xiàng)稅款按下表分段累計(jì)計(jì)算:

全月應(yīng)納稅所得額

稅率(%)

不超過1500元的部分

3

超過1500元至4500元的部分

10

超過4500元至9000元的部分

20

(1)某人10月份應(yīng)交此項(xiàng)稅款為350元,則他10月份的工資收入是多少?

(2)假設(shè)某人的月收入為元, ,記他應(yīng)納稅為元,求的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且滿足,求數(shù)列的通項(xiàng)公式.勤于思考的小紅設(shè)計(jì)了下面兩種解題思路,請你選擇其中一種并將其補(bǔ)充完整.

思路1:先設(shè)的值為1,根據(jù)已知條件,計(jì)算出_________, __________ _________

猜想: _______.

然后用數(shù)學(xué)歸納法證明.證明過程如下:

①當(dāng)時,________________,猜想成立

②假設(shè)N*)時,猜想成立,即_______

那么,當(dāng)時,由已知,得_________

,兩式相減并化簡,得_____________(用含的代數(shù)式表示).

所以,當(dāng)時,猜想也成立.

根據(jù)①和②,可知猜想對任何N*都成立.

思路2:先設(shè)的值為1,根據(jù)已知條件,計(jì)算出_____________

由已知,寫出的關(guān)系式: _____________________

兩式相減,得的遞推關(guān)系式: ____________________

整理: ____________

發(fā)現(xiàn):數(shù)列是首項(xiàng)為________,公比為_______的等比數(shù)列.

得出:數(shù)列的通項(xiàng)公式____,進(jìn)而得到____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=.

(1)求f(2)與f, f(3)與f;

(2)由(1)中求得結(jié)果,你能發(fā)現(xiàn)f(x)與f有什么關(guān)系?并證明你的發(fā)現(xiàn);

(3)求f(1)+f(2)+f(3)+…+f(2013)+f+f+…+f.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四個物體同時從某一點(diǎn)出發(fā)向同一個方向運(yùn)動,其路程關(guān)于時間的函數(shù)關(guān)系式分別為, , ,有以下結(jié)論:

當(dāng)時,甲走在最前面;

當(dāng)時,乙走在最前面;

當(dāng),丁走在最前面,當(dāng)時,丁走在最后面;

丙不可能走在最前面,也不可能走在最后面;

如果它們一直運(yùn)動下去,最終走在最前面的是甲.

其中,正確結(jié)論的序號為 (把正確結(jié)論的序號都填上,多填或少填均不得分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線 ,曲線 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系.

(Ⅰ)求曲線, 的極坐標(biāo)方程;

(Ⅱ)曲線 為參數(shù), , )分別交, , 兩點(diǎn),當(dāng)取何值時, 取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱底面為正三角形,、分別、中點(diǎn)

求證:;

點(diǎn),四棱錐體積為,求三棱錐表面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公比小于1的等比數(shù)列的前項(xiàng)和為

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),若,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P—ABCD的底面ABCD為矩形,PA⊥平面ABCD,點(diǎn)E是棱PD的中點(diǎn),點(diǎn)F是PC的中點(diǎn).

(Ⅰ)證明:PB∥平面AEC;

(Ⅱ)若底面ABCD為正方形,,求二面角C—AF—D大。

查看答案和解析>>

同步練習(xí)冊答案