【題目】如圖,四棱錐P—ABCD的底面ABCD為矩形,PA⊥平面ABCD,點E是棱PD的中點,點F是PC的中點.

(Ⅰ)證明:PB∥平面AEC;

(Ⅱ)若底面ABCD為正方形,,求二面角C—AF—D大。

【答案】(1)詳見解析;(2)60°.

【解析】試題分析:(1)要證線面平行,即證線線平行;(2)建立空間直角坐標(biāo)系,

試題解析:

(Ⅰ)連接BD,設(shè)AC∩BD=O,連結(jié)OE,

∵四邊形ABCD為矩形,∴O是BD的中點,

∵點E是棱PD的中點,∴PB∥EO,

又PB平面AEC,EO平面AEC,

∴PB∥平面AEC.

(Ⅱ)由題可知AB,AD,AP兩兩垂直,則分別以、、的方向為坐標(biāo)軸方向建立空間直角坐標(biāo)系.明確平面DAF的一個法向量為,利用二面角公式求角.

設(shè)由可得AP=AB,

于是可令A(yù)P=AB=AD=2,則

A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,1,1),F(xiàn)(1,1,1)

設(shè)平面CAF的一個法向量為.由于,

所以,解得x=-1,所以

因為y軸平面DAF,所以可設(shè)平面DAF的一個法向量為

由于,所以,解得z=-1,

所以

.所以二面角C—AF—D的大小為60°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)),

(1)求函數(shù)單調(diào)區(qū)間;

(2)當(dāng)時,

①求函數(shù)上的值域;

②求證:,其中,.(參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線過點,其參數(shù)方程為為參數(shù), ),以為極點, 軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知曲線與曲線交于兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線處的切線方程為

(1)求的值;

(2)若對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一企業(yè)從某條生產(chǎn)線上隨機抽取100件產(chǎn)品,測量這些產(chǎn)品的某項技術(shù)指標(biāo)值x,得到如下的頻率分布表:

x

[11,13)

[13,15)

[15,17)

[17,19)

[19,21)

[21,23)

頻數(shù)

2

12

34

38

10

4

(Ⅰ)作出樣本的頻率分布直方圖,并估計該技術(shù)指標(biāo)值x的平均數(shù)和眾數(shù);

(Ⅱ)若x<13或x≥21,則該產(chǎn)品不合格.現(xiàn)從不合格的產(chǎn)品中隨機抽取2件,求抽取的2件產(chǎn)品中技術(shù)指標(biāo)值小于13的產(chǎn)品恰有一件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M{x|xmmZ},N{x|x,nZ}P{x|x,pZ}試確定M,N,P之間的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:函數(shù).

(1)求定義域;

(2)判斷的奇偶性,并說明理由;

(3)求使的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義域為的函數(shù)若同時滿足下列條件:

內(nèi)單調(diào)遞增或單調(diào)遞減;

存在區(qū)間,使上的值域為;那么把叫閉函數(shù).

1求閉函數(shù)符合條件的區(qū)間

2判斷函數(shù)是否為閉函數(shù)?并說明理由

3判斷函數(shù)是否為閉函數(shù)?若是閉函數(shù),求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋子中有四個小球,分別寫有”“”“”“四個字,有放回地從中任取一個小球,取到就停止,用隨機模擬的方法估計直到第二次停止的概率:先由計算器產(chǎn)生14之間取整數(shù)值的隨機數(shù),且用1,2,3,4表示取出小球上分別寫有”“”“”“四個字,以每兩個隨機數(shù)為一組,代表兩次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):

13 24 12 32 43 14 24 32 31 21

23 13 32 21 24 42 13 32 21 34

據(jù)此估計,直到第二次就停止的概率為(  )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊答案