【題目】袋子中有四個小球,分別寫有”“”“”“四個字,有放回地從中任取一個小球,取到就停止,用隨機(jī)模擬的方法估計直到第二次停止的概率:先由計算器產(chǎn)生14之間取整數(shù)值的隨機(jī)數(shù),且用1,2,3,4表示取出小球上分別寫有”“”“”“四個字,以每兩個隨機(jī)數(shù)為一組,代表兩次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):

13 24 12 32 43 14 24 32 31 21

23 13 32 21 24 42 13 32 21 34

據(jù)此估計,直到第二次就停止的概率為(  )

A. B.

C. D.

【答案】B

【解析】由隨機(jī)數(shù)表可知,在20個隨機(jī)數(shù)組中,第二個數(shù)字是3的共有13 43 23 13 135個,所以其發(fā)生的概率為,故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P—ABCD的底面ABCD為矩形,PA⊥平面ABCD,點E是棱PD的中點,點F是PC的中點.

(Ⅰ)證明:PB∥平面AEC;

(Ⅱ)若底面ABCD為正方形,,求二面角C—AF—D大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=.

(1)求f(2)+f,f(3)+f的值;

(2)求證:f(x)+f是定值;

(3)求f(2)+f+f(3)+f+…++f的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了對2016年某校中考成績進(jìn)行分析,在60分以上的全體同學(xué)中隨機(jī)抽出8位,他們的數(shù)學(xué)分?jǐn)?shù)(已折算為百分制)從小到大排是60、65、70、75、80、85、90、95,物理分?jǐn)?shù)從小到大排是72、77、80、84、88、90、93、95.

(1)若規(guī)定85分(包括85分)以上為優(yōu)秀,求這8位同學(xué)中恰有3位同學(xué)的數(shù)學(xué)和物理分?jǐn)?shù)均為優(yōu)秀的概率;

(2)若這8位同學(xué)的數(shù)學(xué)、物理、化學(xué)分?jǐn)?shù)事實上對應(yīng)如下表:

學(xué)生編號

1

2

3

4

5

6

7

8

數(shù)學(xué)分?jǐn)?shù)

60

65

70

75

80

85

90

95

物理分?jǐn)?shù)

72

77

80

84

88

90

93

95

化學(xué)分?jǐn)?shù)

67

72

76

80

84

87

90

92

①用變量的相關(guān)系數(shù)說明物理與數(shù)學(xué)、化學(xué)與數(shù)學(xué)的相關(guān)程度;

的線性回歸方程(系數(shù)精確到0.01),當(dāng)某同學(xué)的數(shù)學(xué)成績?yōu)?/span>50分時,估計其物理、化學(xué)兩科的得分.

參考公式:相關(guān)系數(shù),

回歸直線方程是:,其中,

參考數(shù)據(jù):,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了制定合理的節(jié)電方案,供電局對居民用電情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年200戶居民每戶的月均用電量(單位:度),將數(shù)據(jù)按照,分成9組,制成了如圖所示的頻率直方圖.

(1)求直方圖中的值并估計居民月均用電量的中位數(shù);

(2)從樣本里月均用電量不低于700度的用戶中隨機(jī)抽取4戶,用表示月均用電量不低于800度的用戶數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】冪函數(shù)f(x)=x3m-5(m∈N)在(0,+∞)上是減函數(shù),且f(-x)=f(x),則m可能等于(  )

A. 0 B. 1

C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中石化集團(tuán)獲得了某地深海油田區(qū)塊的開采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分兒口井,取得了地質(zhì)資料.進(jìn)入全面勘探時期后,集團(tuán)按網(wǎng)絡(luò)點來布置井位進(jìn)行全面勘探. 由于勘探一口井的費用很高,如果新設(shè)計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費用.勘探初期數(shù)據(jù)資料見如表:

(Ⅰ)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求,并估計的預(yù)報值;

(Ⅱ)現(xiàn)準(zhǔn)備勘探新井,若通過1、3、5、7號井計算出的的值(精確到0.01)相比于(Ⅰ)中的值之差不超過10%,則使用位置最接近的已有舊井,否則在新位置打開,請判斷可否使用舊井?

(參考公式和計算結(jié)果:

(Ⅲ)設(shè)出油量與勘探深度的比值不低于20的勘探并稱為優(yōu)質(zhì)井,那么在原有井號1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優(yōu)質(zhì)井的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某汽車站每天均有3輛開往省城的分為上、中、下等級的客車,某天袁先生準(zhǔn)備在該汽車站乘車前往省城辦事,但他不知道客車的車況,也不知道發(fā)車順序.為了盡可能乘上上等車,他采取如下策略:先放過一輛,如果第二輛比第一輛好則上第二輛,否則上第三輛.則他乘上上等車的概率為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=ax2-(3a-1)x+a2在[1,+∞)上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案