【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若存在、滿足.求證: (其中為的導(dǎo)函數(shù))
【答案】(1)見解析(2)見解析
【解析】試題分析:(1)f′(x)=,(x>0).對a分類討論:a≤0,a>0,即可得出單調(diào)性;(2)不妨設(shè),于是 ,可得.當(dāng)時, ;當(dāng)時, ,
故只要證即可,即證明 ,即證.設(shè).令,利用導(dǎo)數(shù)研究其單調(diào)性即可證明結(jié)論.
試題解析:
(1)由題知 .
當(dāng),此時函數(shù)在單調(diào)遞增,在單調(diào)遞減.
當(dāng),此時函數(shù)在單調(diào)遞增.
(2)因為,由(1)知
不妨設(shè),由得,
即,
所以.
又因為當(dāng)時, ;當(dāng)時, ,
故只要證,又,只要證
即證明 ,
即證,
也就是證.
設(shè).令,則.
因為,所以,所以在上是增函數(shù).
又,所以當(dāng), 總成立,
原題得證.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來隨著我國在教育利研上的投入不斷加大,科學(xué)技術(shù)得到迅猛發(fā)展,國內(nèi)企業(yè)的國際競爭力得到大幅提升.伴隨著國內(nèi)市場增速放緩,國內(nèi)確實力企業(yè)紛紛進(jìn)行海外布局,第二輪企業(yè)出海潮到來,如在智能手機行業(yè),國產(chǎn)品牌已在趕超國外巨頭,某品牌手機公司一直默默拓展海外市場,在海外共設(shè)30多個分支機構(gòu),需要國內(nèi)公司外派大量70后、80后中青年員工.該企業(yè)為了解這兩個年齡層員工是否愿意被外派上作的態(tài)度,按分層抽樣的方式從70后利80后的員工中隨機調(diào)查了100位,得到數(shù)據(jù)如下表:
愿意被外派 | 不愿意被外派 | 合計 | |
70后 | 20 | 20 | 40 |
80后 | 40 | 20 | 60 |
合計 | 60 | 40 | 100 |
(1)根據(jù)凋查的數(shù)據(jù),是否有的把握認(rèn)為“是否愿意被外派與年齡有關(guān)”,并說明理由;
(2)該公司參觀駐海外分支機構(gòu)的交流體驗活動,擬安排4名參與調(diào)查的70后員工參加,70后的員工中有愿意被外派的3人和不愿意被外派的3人報名參加,現(xiàn)采用隨機抽樣方法從報名的員工中選4人,求選到愿意被外派人數(shù)不少于不愿意被外派人數(shù)的概率.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(參考公式: ,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,直線經(jīng)過的右頂點和上頂點.
(1)求橢圓的方程;
(2)設(shè)橢圓的右焦點為,過點作斜率不為的直線交橢圓于兩點,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面是矩形,側(cè)棱底面, 分別是的中點, .
(Ⅰ)求證: 平面;
(Ⅱ)求證: 平面;
(Ⅲ)若, ,求三棱錐的體積..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面是矩形,側(cè)棱底面, 分別是的中點, , .
(Ⅰ)求證: 平面;
(Ⅱ)求與平面所成角的正弦值;
(Ⅲ)在棱上是否存在一點,使得平面平面?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}中,a2=5,S5=40.等比數(shù)列{bn}中,b1=3,b4=81,
(1)求{an}和{bn}的通項公式
(2)令cn=anbn,求數(shù)列{cn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).
(1)求他們選擇的項目所屬類別互不相同的概率;
(2)記ξ為3人中選擇的項目屬于基礎(chǔ)設(shè)施工程或產(chǎn)業(yè)建設(shè)工程的人數(shù),求ξ的分布列及均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中曲線的方程是,點是上的動點,點滿足(為極點),點的軌跡為曲線,以極點為原點,極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,已知直線的參數(shù)方程是,( 為參數(shù)).
(Ⅰ)求曲線直角坐標(biāo)方程與直線的普通方程;
(Ⅱ)求點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A, B, C的對邊分別為a, b, c,且.
(Ⅰ)求角C的大;
(Ⅱ)設(shè)角A的平分線交BC于D,且AD=,若b=,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com