【題目】如圖,在正方體ABCD﹣A1B1C1D1中,M、N分別是棱C1D1、C1C的中點.以下四個結論:
①直線AM與直線CC1相交;
②直線AM與直線BN平行;
③直線AM與直線DD1異面;
④直線BN與直線MB1異面.
其中正確結論的序號為
(注:把你認為正確的結論序號都填上)

【答案】③④
【解析】∵直線CC1在平面CC1D1D上,
而M∈平面CC1D1D,A平面CC1D1D,
∴直線AM與直線CC1異面,故①不正確,
∵直線AM與直線BN異面,故②不正確,
∵直線AM與直線DD1既不相交又不平行,
∴直線AM與直線DD1異面,故③正確,
利用①的方法驗證直線BN與直線MB1異面,故④正確,
總上可知有兩個命題是正確的,
故答案為:③④
利用兩條直線是異面直線的判斷方法來驗證①③④的正誤,②要證明兩條直線平行,從圖形上發(fā)現(xiàn)這兩條直線也是異面關系,得到結論.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某市規(guī)定,高中學生三年在校期間參加不少于小時的社區(qū)服務才合格.教育部門在全市隨機抽取200位學生參加社區(qū)服務的數(shù)據(jù),按時間段,,

(單位:小時)進行統(tǒng)計,其頻率分布直方圖如圖所示.

)求抽取的200位學生中,參加社區(qū)服務時間不少于90小時的學生人數(shù),并估計

從全市高中學生中任意選取一人,其參加社區(qū)服務時間不少于90小時的概率;

)從全市高中學生(人數(shù)很多)中任意選取3位學生,3位學生中參加社區(qū)服務時間不少于90小時的人數(shù).試求隨機變量的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】斜三棱柱ABC﹣A1B1C1中,AA1=AC=BC=2,∠A1AC=∠C1CB=60°,且平面ACC1A1⊥平面BCC1B1 , 則A1B的長度為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,是偶函數(shù)且不存在零點的是(
A.y=x2
B.y=
C.y=log2x
D.y=( |x|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a>3且a≠ ,命題p:指數(shù)函數(shù)f(x)=(2a﹣6)x在R上單調遞減,命題q:關于x的方程x2﹣3ax+2a2+1=0的兩個實根均大于3.若p或q為真,p且q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:
①三點確定一個平面;
②在空間中,過直線外一點只能作一條直線與該直線平行;
③若平面α上有不共線的三點到平面β的距離相等,則α∥β;
④若直線a、b、c滿足a⊥b、a⊥c,則b∥c.
其中正確命題的個數(shù)是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知三棱錐的底面是直角三角形,直角邊長分別為3和4,過直角頂點的側棱長為4,且垂直于底面,該三棱錐的正視圖是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|x2+x+p=0}.
(Ⅰ)若A=,求實數(shù)p的取值范圍;
(Ⅱ)若A中的元素均為負數(shù),求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點,且離心率為.

(1)求橢圓的方程;

(2)設點軸上的射影為點,過點的直線與橢圓相交于 兩點,且,求直線的方程.

查看答案和解析>>

同步練習冊答案