如圖,點(diǎn)P是∠AOB平分線上一點(diǎn),PC⊥OA,垂足為C,OB與以P為圓心、PC為半徑的圓相切嗎?為什么?
考點(diǎn):圓的切線的性質(zhì)定理的證明
專題:證明題,立體幾何
分析:過P作PD⊥OB,交于D,由角平分線的性質(zhì)定理和圓的切線的定義即可得到OB與以P為圓心、PC為半徑的圓相切.
解答: 解:OB與以P為圓心、PC為半徑的圓相切.
理由如下:過P作PD⊥OB,交于D,
由于點(diǎn)P是∠AOB平分線上一點(diǎn),PC⊥OA,
則PD=PC,
故由圓的切線的定義可得,
OB與以P為圓心、PC為半徑的圓相切.
點(diǎn)評(píng):本題考查圓的切線的性質(zhì)和判定,考查角平分線的性質(zhì)定理,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f(x)=cos2x-2
3
sinxcosx,下列命題:
①若x1,x2滿足x1-x2=π,則f(x1)=f(x2)成立;
②f(x)在區(qū)間[-
π
6
,
π
3
]上單調(diào)遞增;
③函數(shù)f(x)的圖象關(guān)于點(diǎn)(
π
12
,0)成中心對(duì)稱;
④將函數(shù)f(x)的圖象向左平移
12
個(gè)單位后將與y=2sin2x的圖象重合.
其中正確的命題序號(hào)
 
(注:把你認(rèn)為正確的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(x-3)ex的單調(diào)遞減區(qū)間是( 。
A、(-∞,2)
B、(0,3)
C、(1,4)
D、(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,△ABC是邊長(zhǎng)為2的等邊三角形,AA1⊥平面ABC,
D,E,I分別是CC1,AB,AA1的中點(diǎn).
(1)求證:CE∥平面A1BD
(2)若H為A1B上的動(dòng)點(diǎn),CH與平面A1AB所成的最大角的正切值為
15
2
,求側(cè)棱AA1的長(zhǎng).
(3)在(2)的條件下,求二面角I-BD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),對(duì)于任意x∈R都f(x+6)=f(x)+f(3)成立;當(dāng)x1,x2∈[0,3],且x1≠x2時(shí),都有
f(x1)-f(x2)
x1-x2
>0
.給出下列四個(gè)命題:
①f(3)=0;
②直線x=-6是函數(shù)y=f(x)圖象的一條對(duì)稱軸;
③函數(shù)y=f(x)在[-9,-6]上為增函數(shù);
④函數(shù)y=f(x)在[0,2014]上有335個(gè)零點(diǎn).
其中正確命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知線性變換f對(duì)應(yīng)的矩陣M=
02
1-1
,線性變換g對(duì)應(yīng)的矩陣N的屬于特征值λ=-1的一個(gè)特征向量
ξ
=
1
-1
,向量
α
=
1
2
在線性變換g作用下得到的像為
β
=
8
4
;
(1)求矩陣M的逆矩陣;
(2)求矩陣N;
(3)已知曲線C依次作線性變換f和g,得到曲線C′:x+5y+4=0,求曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

畫出經(jīng)過PQR的正方體的截面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線方程為x2-4y2=16,則過點(diǎn)P(2,1)且與該雙曲線只有一個(gè)公共點(diǎn)的直線有
 
條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若y=f(x)(x∈R)是周期為2的偶函數(shù),且當(dāng)0≤x≤1時(shí),f(x)=x2-2x,則方程3f(x)-x=0的實(shí)根個(gè)數(shù)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案