(本小題滿分13分)
已知橢圓C的對稱軸為坐標軸,且短軸長為4,離心率為。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓C的焦點在y軸上,斜率為1的直線l與C相交于A,B兩點,且
,求直線l的方程。

(Ⅰ)(Ⅱ)

解析試題分析:(Ⅰ)設橢圓C的長半軸長為a(a>0),短半軸長為b(b>0),
則2b=4,。            2分
解得a=4,b=2。                      3分
因為橢圓C的對稱軸為坐標軸,
所以橢圓C的方程為標準方程,且為。     5分
(Ⅱ)設直線l的方程為,A(x1,y1),B(x2,y2),     6分
由方程組,消去y,
,      7分
由題意,得, 8分
,  9分
因為
, 11分
所以,解得m=±2,
驗證知△>0成立,
所以直線l的方程為。      13分
考點:橢圓方程幾何性質(zhì)及直線與橢圓相交弦長問題
點評:直線與橢圓相交問題常借助與韋達定理設而不求簡化計算,本題涉及到的弦長公式,其中k是直線斜率,是兩交點橫坐標

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)己知、是橢圓)上的三點,其中點的坐標為過橢圓的中心,且,
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線(斜率存在時)與橢圓交于兩點,,設為橢圓 軸負半軸的交點,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
雙曲線的中心為原點,焦點在軸上,兩條漸近線分別為,經(jīng)過右焦點垂直于的直線分別交兩點.已知成等差數(shù)列,且同向.
(Ⅰ)求雙曲線的離心率;
(Ⅱ)設被雙曲線所截得的線段的長為4,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分15分)
給定橢圓C:,稱圓心在原點O、半徑是的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為,其短軸的一個端點到點的距離為
(1)求橢圓C和其“準圓”的方程;
(2)若點是橢圓C的“準圓”與軸正半軸的交點,是橢圓C上的兩相異點,且軸,求的取值范圍;
(3)在橢圓C的“準圓”上任取一點,過點作直線,使得與橢圓C都只有一個交點,試判斷是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
已知橢圓的離心率為,橢圓C上任意一點到橢圓兩個焦點的距離之和為6。
(1)求橢圓C的方程;
(2)設直線與橢圓C交于A、B兩點,點P(0,1),且|PA|=|PB|,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,是半圓的直徑,是半圓(除端點)上的任意一點.在線段的延長線上取點,使,試求動點的軌跡方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)如圖,已知直線OP1,OP2為雙曲線E:的漸近線,△P1OP2的面積為,在雙曲線E上存在點P為線段P1P2的一個三等分點,且雙曲線E的離心率為.

(1)若P1P2點的橫坐標分別為x1、x,則x1、x2之間滿足怎樣的關(guān)系?并證明你的結(jié)論;
(2)求雙曲線E的方程;
(3)設雙曲線E上的動點,兩焦點,若為鈍角,求點橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓O和定點A(2,1),由圓O外一點向圓O引切線PQ,切點為Q,且滿足

(1) 求實數(shù)ab間滿足的等量關(guān)系;
(2) 若以P為圓心所作的圓P與圓O有公共點,試求半徑取最小值時圓P的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)如圖所示,橢圓C 的離心率,左焦點為右焦點為,短軸兩個端點為.與軸不垂直的直線與橢圓C交于不同的兩點、,記直線、的斜率分別為,且

(1)求橢圓 的方程;
(2)求證直線 與軸相交于定點,并求出定點坐標.
(3)當弦 的中點落在內(nèi)(包括邊界)時,求直線的斜率的取值。

查看答案和解析>>

同步練習冊答案