(本題滿分12分)
雙曲線的中心為原點,焦點在軸上,兩條漸近線分別為,經(jīng)過右焦點垂直于的直線分別交于兩點.已知成等差數(shù)列,且與同向.
(Ⅰ)求雙曲線的離心率;
(Ⅱ)設(shè)被雙曲線所截得的線段的長為4,求雙曲線的方程.
(Ⅰ)e==;(Ⅱ)。
解析試題分析:(Ⅰ)設(shè),,
由勾股定理可得:
得:,,
由倍角公式,解得,則離心率.
(Ⅱ)過直線方程為,與雙曲線方程聯(lián)立
將,代入,
化簡有
將數(shù)值代入,有,解得
故所求的雙曲線方程為.
解法二:解:(Ⅰ)設(shè)雙曲線方程為(a>0,b>0),右焦點為F(c,0)(c>0),則c2=a2+b2
不妨設(shè)l1:bx-ay=0,l2:bx+ay=0
則 ,
因為2+2=2,且=2-,
所以2+2=(2-)2,
于是得tan∠AOB=。
又與同向,故∠AOF=∠AOB,
所以
解得 tan∠AOF=,或tan∠AOF=-2(舍去)。
因此
所以雙曲線的離心率e==
(Ⅱ)由a=2b知,雙曲線的方程可化為
x2-4y2=4b2 ①
由l1的斜率為,c=b知,直線AB的方程為
y=-2(x-b) ②
將②代入①并化簡,得
15x2-32bx+84b2=0
設(shè)AB與雙曲線的兩交點的坐標分別為(x1,y1),(x2,y2),則
x1+x2=,x1·x2= ③
AB被雙曲線所截得的線段長
l= ④
將③代入④,并化簡得l=,而由已知l=4,故b=3,a=6
所以雙曲線的方程為
考點:本題主要考查雙曲線的幾何性質(zhì),直線與雙曲線的位置關(guān)系,兩角和的正切公式。
點評:中檔題,涉及直線與圓錐曲線的位置關(guān)系問題,往往要利用韋達定理。弦長問題,往往利用弦長公式,通過整體代換,簡化解題過程。
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的方程為,點P的坐標為(-a,b).
(1)若直角坐標平面上的點M、A(0,-b),B(a,0)滿足,求點的坐標;
(2)設(shè)直線交橢圓于、兩點,交直線于點.若,證明:為的中點;
(3)對于橢圓上的點Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個交點、滿足,寫出求作點、的步驟,并求出使、存在的θ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分,(Ⅰ)小問3分,(Ⅱ)小問9分.)
直線稱為橢圓的“特征直線”,若橢圓的離心率.(1)求橢圓的“特征直線”方程;
(2)過橢圓C上一點作圓的切線,切點為P、Q,直線PQ與橢圓的“特征直線”相交于點E、F,O為坐標原點,若取值范圍恰為,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
在平面直角坐標系中,已知三點,,,曲線C上任意—點滿足:.
(l)求曲線C的方程;
(2)設(shè)點P是曲線C上的任意一點,過原點的直線L與曲線相交于M,N兩點,若直線PM,PN的斜率都存在,并記為,.試探究的值是否與點P及直線L有關(guān),并證明你的結(jié)論;
(3)設(shè)曲線C與y軸交于D、E兩點,點M (0,m)在線段DE上,點P在曲線C上運動.若當點P的坐標為(0,2)時,取得最小值,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)
已知點為拋物線: 的焦點,為拋物線上的點,且.
(Ⅰ)求拋物線的方程和點的坐標;
(Ⅱ)過點引出斜率分別為的兩直線,與拋物線的另一交點為,與拋物線的另一交點為,記直線的斜率為.
(ⅰ)若,試求的值;
(ⅱ)證明:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)
已知點,,△的周長為6.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)設(shè)過點的直線與曲線相交于不同的兩點,.若點在軸上,且,求點的縱坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)
已知橢圓C的對稱軸為坐標軸,且短軸長為4,離心率為。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的焦點在y軸上,斜率為1的直線l與C相交于A,B兩點,且
,求直線l的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知點F是拋物線C:的焦點,S是拋物線C在第一象限內(nèi)的點,且|SF|=.
(Ⅰ)求點S的坐標;
(Ⅱ)以S為圓心的動圓與軸分別交于兩點A、B,延長SA、SB分別交拋物線C于M、N兩點;
①判斷直線MN的斜率是否為定值,并說明理由;
②延長NM交軸于點E,若|EM|=|NE|,求cos∠MSN的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com