三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3,PB=2,PC=1,設M是底面△ABC內一點,定義f(M)=(m,n,p),其中m,n,p分別是三棱錐M-PAB,三棱錐M-PBC,三棱錐M-PCA的體積.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8
恒成立,則正實數(shù)a的最小值為( 。
A、1
B、13-4
3
C、9-4
2
D、2
考點:棱柱、棱錐、棱臺的體積
專題:計算題,不等式的解法及應用
分析:先根據三棱錐的特點求出其體積,然后利用基本不等式求出
1
x
+
a
y
的最小值,建立關于a的不等關系,解之即可.
解答: 解:∵PA、PB、PC兩兩垂直,且PA=3.PB=2,PC=1.
∴V P-ABC=
1
3
×
1
2
×3×2×1=1=
1
2
+x+y
即x+y=
1
2
則2x+2y=1
1
x
+
a
y
=(
1
x
+
a
y
)(2x+2y)=2+2a+
2y
x
+
2ax
y
≥2+2a+4
a
≥8
解得a≥1,
∴正實數(shù)a的最小值為1
故選:A.
點評:本題主要考查了棱錐的體積,同時考查了基本不等式的運用,是題意新穎的一道題目,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,S4=1,S8=3,則a9+a10+a11+a12的值是(  )
A、4B、6C、9D、12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知|AB|=|BC|=|AC|=2,則向量
AB
BC
的數(shù)量積
AB
BC
=( 。
A、2
3
B、-2
3
C、2
D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=cot(
π
4
x-
π
2
),x∈(2,6)的圖象與x軸交于A點,過點A的直線l與函數(shù)的圖象交于B,C兩點,則(
OB
+
OC
)•
OA
=( 。
A、4B、8C、16D、32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在下列冪函數(shù)中,過點(0,0)和(-1,1),并且是偶函數(shù)的是( 。
A、y=-x
B、y=x-2
C、y=x 
1
2
D、y=x 
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α+β=3π,下列等式恒成立的是( 。
A、sinα=sinβ
B、cosα=cosβ
C、sinα=cosβ
D、tanα=tanβ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一只昆蟲在邊長分別為6,8,10的三角形區(qū)域內隨機爬行,則其到三角形頂點的距離小于2的地方的概率為(  )
A、
π
12
B、
π
10
C、
π
6
D、
π
24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設全集U={1,2,3,4},集合S={l,3},T={4},則(∁US)∪T等于( 。
A、{2,4}B、{4}
C、∅D、{1,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}滿足a7+a8+a3=15,函數(shù)fn(x)=sin(
π
n
x+
π
3
),那么f5(a6)的值為( 。
A、
3
2
B、-
3
2
C、
1
2
D、-
1
2

查看答案和解析>>

同步練習冊答案