8.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+y的最小值為(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,即可得到結(jié)論.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當(dāng)直線y=-2x+z經(jīng)過(guò)點(diǎn)A時(shí),直線的截距最小,
此時(shí)z最小,
由 $\left\{\begin{array}{l}{x-y=-1}\\{x+y=1}\end{array}\right.$,解得 $\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$,
即A(0,1),此時(shí)z=0×2+1=1,
故選:C.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)的定義域?yàn)?({-\frac{1}{2},1})$,則函數(shù)$f({\frac{1}{x}})$的定義域?yàn)椋ā 。?table class="qanwser">A.(1,+∞)B.(-2,1)C.(0,1)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若冪函數(shù)f(x)=xm的圖象過(guò)點(diǎn)(2,$\frac{\sqrt{2}}{2}$),則f(4)的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知O是坐標(biāo)原點(diǎn),點(diǎn)A(-1,0),若M(x,y)為平面區(qū)域$\left\{\begin{array}{l}{x+y≥2}\\{x≤1y≤2}\\{\;}\end{array}\right.$上的一個(gè)動(dòng)點(diǎn),則|$\overrightarrow{OA}+\overrightarrow{OM}$|的取值范圍是[1,$\sqrt{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.要得到函數(shù) f(x)=sin(3x+$\frac{π}{3}$)的導(dǎo)函數(shù)f′(x)的圖象,只需將f(x)的圖象(  )
A.向右平移$\frac{π}{3}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍( 橫坐標(biāo)不變)
B.向右平移$\frac{π}{6}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)縮短到原來(lái)的3倍( 橫坐標(biāo)不變)
C.向左平移$\frac{π}{3}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)縮短到原來(lái)的 3倍( 橫坐標(biāo)不變)
D.向左平移$\frac{π}{6}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的 3倍( 橫坐標(biāo)不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在四棱錐中P-ABCD,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2$\sqrt{2}$,BC=4$\sqrt{2}$,PA=2.

(1)求證:AB⊥PC;
(2)在線段PD上,是否存在一點(diǎn)M,使得二面角M-AC-D的大小為45°,如果存在,求BM與平面MAC所成角的正弦值,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=|x-1|+|x+a|,g(x)=|x-2|+1.
(1)當(dāng)a=2時(shí),解不等式f(x)≥5;
(2)若對(duì)任意x1∈R,都存在x2∈R,使得g(x2)=f(x1)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.“sinα=cosα”是“$α=\frac{π}{4}+2kπ,(k∈Z)$”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.拋物線y2=8x的焦點(diǎn)坐標(biāo)是(  )
A.(-2,0)B.(0,-2)C.(2,0)D.(0,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案