對于數(shù)列{an},定義數(shù)列{an+1-an}為數(shù)列{an}的“差數(shù)列”,若a1=1,{an}的“差數(shù)列”的通項公式為an+1-an=2n,則an=
 
考點:數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:由an+1-an=2n,a1=1,利用累加法能求出an
解答: 解:∵an+1-an=2n,a1=1,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2n-1+2n-2+…+22+2+1
=
1-2n
1-2
=2n-1.
故答案為:2n-1.
點評:本題考查數(shù)列的通項公式的求法,是中檔題,解題時要注意累加法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△AOB中,O為坐標(biāo)原點,A(1,cosθ),B(sinθ,1),θ∈(0,
π
2
],則△AOB面積的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3-3ax+b(a>0)的極大值為6,極小值為2,則f(x)的減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果隨機(jī)變量X~N(μ,σ2),且E(X)=3,D(X)=1,且p(2≤X≤4)=0.6826,則p(X>4)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式|x+2|+|x-3|≥a對任意的實數(shù)x恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P,Q為拋物線x2=2y上兩點,點P,Q的橫坐標(biāo)分別為4,-2,過點P,Q分別作拋物線的切線,兩切線交于點A,則點A的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C1,C2的極坐標(biāo)方程分別為ρ=4cos(θ+
π
6
)和ρcos(θ+
π
6
)=5,設(shè)點P在曲線C1上,點Q在C2上,則|PQ|的最小值為
 
..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α是三角形的一個內(nèi)角,在sinα、cosα、tαnα、tαn
α
2
中,可能取負(fù)值的有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

{an}是等差數(shù)列,Sn是其前n項和,a1-a4-a8+2a6+a15=2,則S15=( �。�
A、30B、15
C、-30D、-15

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷