【題目】一個(gè)袋中有2個(gè)紅球,4個(gè)白球.
(1)從中取出3個(gè)球,求取到紅球個(gè)數(shù)的概率分布及數(shù)學(xué)期望;
(2)每次取1個(gè)球,取出后記錄顏色并放回袋中.
①若取到第二次紅球就停止試驗(yàn),求第5次取球后試驗(yàn)停止的概率;
②取球4次,求取到紅球個(gè)數(shù)的概率分布及數(shù)學(xué)期望.
【答案】(1)分布列見解析,1;(2)①;②分布列見解析,.
【解析】
(1)利用超幾何分布的概率計(jì)算公式分別計(jì)算出紅球個(gè)數(shù)的取值為的概率,即可表示分布列,再利用數(shù)學(xué)期望的計(jì)算公式求得對(duì)應(yīng)期望值;
(2)①事件“取到第二次紅球就停止試驗(yàn),第5次取球后試驗(yàn)停止”等價(jià)于事件“前4次中恰有一次取出紅球,且第5次取出紅球”,計(jì)算后者獨(dú)立事件的概率即可;
②利用二項(xiàng)分布的分布計(jì)算公式分別計(jì)算出紅球個(gè)數(shù)的取值為的概率,即可表示分布列,再利用數(shù)學(xué)期望的計(jì)算公式求得對(duì)應(yīng)期望值.
(1)取到紅球個(gè)數(shù)的可能取值為
所以,,,
即分布列為:
X | 0 | 1 | 2 |
P |
故數(shù)學(xué)期望為:;
(2)設(shè)“取一次取出紅球”為事件A,“取一次取出白球”為事件B,且,
①事件“前4次中恰有一次取出紅球”記為C,且與“第5次取出紅球”相互獨(dú)立
則若取到第二次紅球就停止試驗(yàn),第5次取球后試驗(yàn)停止的概率
②取球4次,求取到紅球個(gè)數(shù)的可能取值為
所以,,,,
即分布列為:
Y | 0 | 1 | 2 | 3 | 4 |
P |
故數(shù)學(xué)期望為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)院用光電比色計(jì)檢查尿汞時(shí),得尿汞含量(毫克/升)與消光系數(shù)如下表:
尿汞含量 | 2 | 4 | 6 | 8 | 10 |
消光系數(shù) | 64 | 138 | 205 | 285 | 360 |
(1)作散點(diǎn)圖;
(2)如果與之間具有線性相關(guān)關(guān)系,求回歸線直線方程;
(3)估計(jì)尿汞含量為9毫克/升時(shí)消光系數(shù).
,.
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(13分)如圖,在四棱錐P﹣ABCD中,底面ABCD為平行四邊形,∠ADC=45°,AD=AC=1,O為AC中點(diǎn),PO⊥平面ABCD,PO=2,M為PD中點(diǎn).
(Ⅰ)證明:PB∥平面ACM;
(Ⅱ)證明:AD⊥平面PAC;
(Ⅲ)求直線AM與平面ABCD所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)甲、乙、丙三個(gè)羽毛球協(xié)會(huì)的運(yùn)動(dòng)員人數(shù)分別為18,9,18,先采用分層抽樣的方法從這三個(gè)協(xié)會(huì)中抽取5名運(yùn)動(dòng)員參加比賽.
(1)求應(yīng)從這三個(gè)協(xié)會(huì)中分別抽取的運(yùn)動(dòng)員人數(shù);
(2)將抽取的5名運(yùn)動(dòng)員進(jìn)行編號(hào),編號(hào)分別為,從這5名運(yùn)動(dòng)員中隨機(jī)抽取2名參加雙打比賽. 設(shè)“編號(hào)為的兩名運(yùn)動(dòng)員至少有一人被抽到” 為事件A,求事件A發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,為其焦點(diǎn),拋物線的準(zhǔn)線交軸于點(diǎn)T,直線l交拋物線于A,B兩點(diǎn)。
(1)若O為坐標(biāo)原點(diǎn),直線l過拋物線焦點(diǎn),且,求△AOB的面積;
(2)當(dāng)直線l與坐標(biāo)軸不垂直時(shí),若點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)在直線AT上,證明直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)足球甲聯(lián)賽共有12個(gè)足球俱樂部參加,實(shí)行主客場(chǎng)雙循環(huán)賽制,即任何兩隊(duì)分別在主場(chǎng)和客場(chǎng)各比賽一場(chǎng),勝一場(chǎng)得3分,平一場(chǎng)各得1分,負(fù)一場(chǎng)得0分,在聯(lián)賽結(jié)束后按積分的高低排出名次.則在積分榜上位次相鄰的兩支球隊(duì)積分差距最多可達(dá)_________分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),在一個(gè)周期內(nèi)的圖象如下圖所示.
(1)求函數(shù)的解析式;
(2)設(shè),且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍和這兩個(gè)根的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)在中,角A,B,C所對(duì)的邊分別是a,b,c,證明余弦定理:;
(2)長(zhǎng)江某地南北岸平行,如圖所示,江面寬度,一艘游船從南岸碼頭A出發(fā)航行到北岸,假設(shè)游船在靜水中的航行速度,水流速度,設(shè)和的夾角為θ(),北岸的點(diǎn)在點(diǎn)A的正北方向.
①當(dāng)多大時(shí),游船能到達(dá)處,需要航行多少時(shí)間?
②當(dāng)時(shí),判斷游船航行到達(dá)北岸的位置在的左側(cè)還是右側(cè),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知以C為圓心的圓及其上一點(diǎn).
(1)設(shè)平行于的直線與圓C相交于兩點(diǎn),且,求直線的方程;
(2)設(shè)點(diǎn)滿足:存在圓C上的兩點(diǎn)使得,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com