在平面直角坐標(biāo)系中,動點(diǎn)到兩點(diǎn),的距離之和等于4,設(shè)點(diǎn)的軌跡為曲線C,直線過點(diǎn)且與曲線C交于A,B兩點(diǎn).
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)是否存在△AOB面積的最大值,若存在,求出△AOB的面積;若不存在,請說明理由.
(Ⅰ);(Ⅱ)存在;最大值為
解析試題分析:該題考察曲線方程的求法、直線和橢圓的位置關(guān)系、函數(shù)的最大值,考察數(shù)形結(jié)合、綜合分析問題和解決問題的能力.(Ⅰ)由已知曲線是以為焦點(diǎn)的橢圓,且,故曲線的方程為;(Ⅱ)設(shè)過點(diǎn)的直線方程為: ,將它與橢圓:聯(lián)立,可得,設(shè),,然后根據(jù)韋達(dá)定理代入,可得關(guān)于的函數(shù),再求其最大值即可.
試題解析:(Ⅰ)由橢圓定義可知,點(diǎn)的軌跡C是以,為焦點(diǎn),長半軸長為2的橢圓.
故曲線的方程為. 4分
(Ⅱ)存在△面積的最大值.
因?yàn)橹本過點(diǎn),可設(shè)直線的方程為 或(舍).
則
整理得 . 7分
由.
設(shè).
解得 , .
則 .
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/86/c/1tthv2.png" style="vertical-align:middle;" />. 10分
設(shè),,.
則在區(qū)間上為增函數(shù).
所以.
所以,當(dāng)且僅當(dāng)時取等號,即.
所以的最大值為. 12分
考點(diǎn):1、曲線的方程的求法;2、直線和橢圓的位置關(guān)系;3、函數(shù)的最大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
矩形的中心在坐標(biāo)原點(diǎn),邊與軸平行,=8,=6.分別是矩形四條邊的中點(diǎn),是線段的四等分點(diǎn),是線段的四等分點(diǎn).設(shè)直線與,與,與的交點(diǎn)依次為.
(1)求以為長軸,以為短軸的橢圓Q的方程;
(2)根據(jù)條件可判定點(diǎn)都在(1)中的橢圓Q上,請以點(diǎn)L為例,給出證明(即證明點(diǎn)L在橢圓Q上).
(3)設(shè)線段的(等分點(diǎn)從左向右依次為,線段的等分點(diǎn)從上向下依次為,那么直線與哪條直線的交點(diǎn)一定在橢圓Q上?(寫出結(jié)果即可,此問不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖已知拋物線的焦點(diǎn)坐標(biāo)為,過的直線交拋物線于兩點(diǎn),直線分別與直線:相交于兩點(diǎn).
(1)求拋物線的方程;
(2)證明△ABO與△MNO的面積之比為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓過點(diǎn),離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)且斜率為()的直線與橢圓相交于兩點(diǎn),直線、分別交直線 于、兩點(diǎn),線段的中點(diǎn)為.記直線的斜率為,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:,
(1)若橢圓的長軸長為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且為銳角(為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍;
(3)過原點(diǎn)任意作兩條互相垂直的直線與橢圓:相交于四點(diǎn),設(shè)原點(diǎn)到四邊形的一邊距離為,試求時滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線 C
(Ⅰ)求C的方程;
(Ⅱ)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點(diǎn),當(dāng)圓P的半徑最長時,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是橢圓的右焦點(diǎn),圓與軸交于兩點(diǎn),是橢圓與圓的一個交點(diǎn),且
(Ⅰ)求橢圓的離心率;
(Ⅱ)過點(diǎn)與圓相切的直線與的另一交點(diǎn)為,且的面積為,求橢圓的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,且過點(diǎn).
(1)求橢圓的方程;
(2)若過點(diǎn)C(-1,0)且斜率為的直線與橢圓相交于不同的兩點(diǎn),試問在軸上是否存在點(diǎn),使是與無關(guān)的常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知曲線上任意一點(diǎn)到點(diǎn)的距離與到直線的距離相等.
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè),是軸上的兩點(diǎn),過點(diǎn)分別作軸的垂線,與曲線分別交于點(diǎn),直線與x軸交于點(diǎn),這樣就稱確定了.同樣,可由確定了.現(xiàn)已知,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com