如圖已知拋物線的焦點(diǎn)坐標(biāo)為,過的直線交拋物線于兩點(diǎn),直線分別與直線:相交于兩點(diǎn).
(1)求拋物線的方程;
(2)證明△ABO與△MNO的面積之比為定值.
(1);(2)證明過程詳見解析.
解析試題分析:本題主要考查拋物線、直線的方程,以及直線與拋物線的位置關(guān)系,突出解析幾何的基本思想和方法的考查:如數(shù)形結(jié)合思想、坐標(biāo)化方法等.第一問,利用拋物線的標(biāo)準(zhǔn)方程,利用焦點(diǎn)坐標(biāo)求出,代入即可;第二問,討論直線垂直和不垂直軸2種情況,當(dāng)直線垂直于軸時(shí),2個(gè)三角形相似,面積比為定值,當(dāng)直線不垂直于軸時(shí),設(shè)出直線的方程,設(shè)出四個(gè)點(diǎn)坐標(biāo),利用直線與拋物線相交列出方程組,消參得到方程,利用兩根之積得為定值,而面積比值與有關(guān),所以也為定值.
試題解析:(1)由焦點(diǎn)坐標(biāo)為 可知
所以,所以拋物線的方程為 5分
(2)當(dāng)直線垂直于軸時(shí),與相似,
所以, 7分
當(dāng)直線與軸不垂直時(shí),設(shè)直線AB方程為,
設(shè),,,,
解整理得, 9分
所以, 10分
,
綜上 12分
考點(diǎn):1.拋物線的標(biāo)準(zhǔn)方程;2.直線方程;3.根與系數(shù)關(guān)系;4.三角形面積公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,長軸長為,直線交橢圓于不同的兩點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若直線不經(jīng)過橢圓上的點(diǎn),求證:直線的斜率互為相反數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:()的右焦點(diǎn),右頂點(diǎn),右準(zhǔn)線且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)動(dòng)直線:與橢圓有且只有一個(gè)交點(diǎn),且與右準(zhǔn)線相交于點(diǎn),試探究在平面直角坐標(biāo)系內(nèi)是否存在點(diǎn),使得以為直徑的圓恒過定點(diǎn)?若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且過點(diǎn).
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓相切的直線交拋物線于不同的兩點(diǎn)若拋物線上一點(diǎn)滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖已知橢圓的中點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,長軸是短軸的2倍且過點(diǎn),平行于的直線在y軸的截距為,且交橢圓與兩點(diǎn),
(1)求橢圓的方程;(2)求的取值范圍;(3)求證:直線、與x軸圍成一個(gè)等腰三角形,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線與雙曲線有公共焦點(diǎn),點(diǎn)是曲線在第一象限的交點(diǎn),且.
(Ⅰ)求雙曲線的方程;
(Ⅱ)以雙曲線的另一焦點(diǎn)為圓心的圓與直線相切,圓:.過點(diǎn)作互相垂直且分別與圓、圓相交的直線和,設(shè)被圓截得的弦長為,被圓截得的弦長為,問:是否為定值?如果是,請求出這個(gè)定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左、右焦點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=2,點(diǎn)P(1,)在橢圓C上.
(I)求橢圓C的方程;
(II)如圖,動(dòng)直線:與橢圓C有且僅有一個(gè)公共點(diǎn),點(diǎn)M,N是直線l上的兩點(diǎn),且,,四邊形面積S的求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到兩點(diǎn),的距離之和等于4,設(shè)點(diǎn)的軌跡為曲線C,直線過點(diǎn)且與曲線C交于A,B兩點(diǎn).
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)是否存在△AOB面積的最大值,若存在,求出△AOB的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,、分別是橢圓的頂點(diǎn),過坐標(biāo)原點(diǎn)的直線交橢圓于、兩點(diǎn),其中在第一象限.過作軸的垂線,垂足為.連接,并延長交橢圓于點(diǎn).設(shè)直線的斜率為.
(Ⅰ)當(dāng)直線平分線段時(shí),求的值;
(Ⅱ)當(dāng)時(shí),求點(diǎn)到直線的距離;
(Ⅲ)對任意,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com